соответственно, ?-1, ?-1, ?-1, ?-1, ?-1в. Для описания взаимосвязи с F выберем отношение ? вf. Выбор такого набора отношений соответствует наиболее распространенной схеме формирования системы, уже описанной в начале раздела в виде процесса достижения цели, когда для достижения системы целей F формируется множество элементарных процессов В. Будем считать, что главные предикаты ?1 + ?r описывают только выбранные бинарные отношения. Можно выбрать и другой набор отношений; при любом наборе отношений, устанавливающих взаимосвязи между всеми множествами А, В, D, E, F, будут справедливы результаты, полученные ниже.

• Модели процесса и структуры системы определим в следующем виде. Процесс Р системы S (назовем его также полным системным процессом) — это множество взаимосвязанных элементарных процессов:

P = < {B, D}, W, ?p >; ?р ? ?.

Структура С системы S (назовем ее также полной системной структурой) — это множество взаимосвязанных элементов системы:

С = < {A, E}, W, ?c >; ?с ? ?.

• В соответствии с принятыми исходными положениями моделирования системы имеет место взаимнооднозначное соответствие между элементами множеств А и В. Взаимнооднозначное соответствие имеет место также между элементами множеств E и D. Следовательно, имеет место взaимнооднoзначное соответствие между элементами множеств-носителей в (4.4.2) и (4.4.3). Имеется также взаимнооднозначное соответствие между каждыми двумя упорядоченными парами (аi, ej) и (вi, dj), что однозначно следует из исходных положений описания с помощью сигнатуры ? целенаправленного процесса формирования модели (4.4.1). Следовательно, имеется взаимнооднозначное соответствие между элементами сигнатур ? р и ?с, ?р ? ?с. Далее, любая операция из Wc, например, объединение элементов а, а ? А и е, е ? E, взаимнооднозначно соответствует такой же операции из Wp, т.е., в данном случае, объединению процессов в, в ? B и d, d ? D. Следовательно, Wp = Wc. Но так как Wp ? Wc, Wc ? W и W | {Wp ? Wc} = ?, то Wp = Wc = W. Итак, доказана следующая

Теорема 4.4.1. Для модели системы S модели процесса Р и структуры С изоморфны.

Модели полных, основных и дополнительных системных объектов. На основе (4.4.1)-(4.4.3) сформулируем следующий результат.

Теорема 4.4.2. Модель полной системы S – это совокупность моделей процесса Р и структуры С:

S = < P,C,?(?),?(?-1),?(?),?(?-1)>

Полный процесс системы Р мы представляем как объединение основного процесса достижения цели Рa и системного процесса взаимодействия Ре. Хотя нами рассматриваются системы, создаваемые для реализации процесса, все результаты системной технологии могут быть применены для систем, предназначенных для реализации структуры. В системах, предназначенных для реализации системного процесса достижения цели, основные элементы системы а реализуют элементарные процессы достижения цели в. Но элементарные процессы достижения цели не могут объединяться в системный процесс Pа, минуя элементарные процессы взаимодействия d. Следовательно, необходимо описать вклад, вносимый элементарными процессами взаимодействия, в системный процесс достижения цели. Это участие не является целенаправленным, как в случае элементарных процессов достижения цели в, и, как правило, приводит к некоторому ухудшению Pa. Допустимое влияние элементарного процесса взаимодействия должно, видимо, заключаться в том, чтобы вносить какие-либо допустимые изменения в процесс достижения цели Pa при «передаче» предмета труда от одного элементарного процесса достижения цели вi к некоторому другому элементарному процессу достижения цели вj. Обозначим это допустимое изменение ?d — изменение результатов некоторого элементарного процесса вi при «передаче» предмета труда к некоторому другому «следующему» элементарному процессу вj. Множество этих изменений обозначим ? d, т.е. ?d ? ?d. Отсюда вытекает следующая теорема.

Теорема 4.4.3. Каждый элементарный процесс взаимодействия d, d ? D, между некоторыми двумя элементарными процессами достижения цели вi и вj (вi, вj ? В) объединяет в себе собственно элементарный процесс взаимодействия d0 и элементарный процесс обеспечения ограничения ?d:

d = { d0, ?d }; d0 ? D0; ?d ? ?d; D = { D0, ?d }.

Системный процесс взаимодействия Рe, в свою очередь, реализуется в системе элементами взаимодействия е. Но элементарные процессы взаимодействия d, которые ими реализуются, не могут быть объединены в системный процесс взаимодействия без участия элементарных процессов достижения цели в. Участие элементарных процессов достижения цели в в процессе Pe (аналогично учету участия элементарных процессов d в процессе Pa) должно быть учтено введением ограничений на изменение характеристик элементарных процессов взаимодействия при «переходе» через некоторый элементарный процесс из В («обеспечение взаимодействия между элементарными взаимодействиями»). Множество этих ограничений обозначим , т.е. ?в ? ?в.

Отсюда следует

Теорема 4.4.4. Каждый элементарный процесс в, в ? В, реализуемый элементом а ? А, объединяет в себе собственно элементарный процесс достижения цели в0 и элементарный процесс обеспечения ограничения ?в:

в = {в0, ?в }; в0 ? В0; ?в ? ?в, В = { В0, ?в }.

Пересечения D0 ? ?d и В0 ? ?в не обязательно пустые множества.

Полученные результаты и наличие взаимнооднозначных соответствий между элементами множеств А и В, а также между элементами множеств Е и D, соответственно, позволяют сформулировать следующую теорему.

Теорема 4.4.5. Элементы а и е разложимы на части, реализующие части процессов в и d:

а = {а0, ?a}; а0 ? A0; ?a ? ?a; А = {A0, ?a};

e = { e0, ?е }; e0 ? E0; ?е ? ?e; E= { E0, ?e};

В качестве обобщения сформулируем следующий результат.

Теорема 4.4.6. Элементы а, е (а ? А, е ? Е) и элементарные процессы в, d (в ? В, d ? D) в модели системы S разложимы на части, образующие структуры Ca, Ce и процессы Рa, Ре основной Sa и дополнительной Sе систем.

Следуя доказанному, сформулируем следующие результаты.

Системный процесс достижения цели Рa представит собой объединения элементарных процессов достижения цели в0 и процессов обеспечения ограничений на допустимое изменение результатов элементарных процессов достижения цели ?d при передаче результатов одного элементарного процесса достижения цели к другому. Отсюда следует, что

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату