тоже давление пара. Оба движения возникли под действием одной и той же силы. То же самое происходит и при выстреле, только там действует не пар, а пороховые газы.
Явление отдачи необходимо следует из правила равенства действия и противодействия. Если пар действует на пробку, то и пробка действует на пар в обратную сторону, а пар передает это противодействие пробирке.
Но, может быть, вам приходит в голову возражение: разве может одна и та же сила приводить к столь разным следствиям? Ружье лишь слегка отходит обратно, а пуля летит далеко. Мы надеемся, однако, что такое возражение не пришло в голову читателю. Конечно, одинаковые силы могут приводить к разным следствиям: ведь ускорение, которое получает тело (а это и есть следствие действия силы), обратно пропорционально массе этого тела. Ускорение одного из тел (снаряда, пули, пробки) мы должны записать в виде
Это значит, что ускорение, которое получит пушка при откате, будет во столько раз меньше ускорения снаряда, во сколько раз пушка весит больше, чем снаряд.
Ускорение пули, а также и ружья при отдаче, длится до тех пор, пока пуля движется в дуле ружья. Обозначим это время буквой
Скорости, с которыми разлетаются тела после взаимодействия, будут обратно пропорциональны массам этих тел.
Если вспомнить векторный характер скорости, то последнее соотношение можно переписать так:
Наконец, перепишем равенство еще раз – перенесем произведения масс на скорости в одну сторону равенства:
Закон сохранения импульса
Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением скорости движения тела.
При помощи нового понятия закон Ньютона
Вернемся к явлению отдачи.
Наш результат рассмотрения отдачи орудия можно теперь сформулировать короче: сумма импульсов орудия и снаряда после выстрела остается равной нулю. Очевидно, такой же она была и до выстрела, когда орудие и снаряд находились в состоянии покоя.
Скорости, входящие в уравнение
В артиллерийской практике в настоящее время широко применяются орудия, установленные на платформе и стреляющие на ходу. Как же изменить выведенное уравнение, чтобы оно было применимо к выстрелу из такого орудия? Мы можем записать:
где
Подставляя значения
(
В правой части равенства у нас стоит сумма импульсов снаряда и орудия после выстрела. А в левой? До выстрела орудие и снаряд с общей массой
Мы доказали очень важный закон природы, который называется законом сохранения импульса. Доказали мы его для двух тел, но можно легко показать, что такой же результат имеет место и для любого числа тел. Каково же содержание закона? Закон сохранения импульса говорит, что сумма импульсов нескольких тел, находящихся во взаимодействии, не меняется в результате этого взаимодействия.