начинается спуск, чтобы акробат не свалился в наивысшей точке мертвой петли? Условие нам известно: центробежная сила, прижимающая акробата к помосту, должна уравновесить силу тяжести, направленную в противоположную сторону. Значит,
А вот еще одна задача. Возьмем круглый купол, очень гладкий, чтобы трение было минимальным. На вершину положим небольшой предмет и едва заметным толчком дадим ему возможность скользить по куполу. Рано или поздно скользящее тело отделится от купола и начнет падать. Мы можем легко решить вопрос, когда именно тело оторвется от поверхности купола: в момент отрыва центробежная сила должна равняться составляющей веса на направление радиуса (в этот момент тело перестанет давить на купол, а это и есть момент отрыва). На рис. 34 видны два подобных треугольника; изображен момент отрыва. Составим отношение катета к гипотенузе для треугольника сил и приравняем к соответствующему отношению сторон другого треугольника:
Здесь
Закон сохранения механической энергии
Мы убедились на только что рассмотренных примерах, как полезно знать величину, не изменяющую свое численное значение (сохраняющуюся) при движении.
Пока мы знаем такую величину лишь для одного тела. А если в поле тяжести движется несколько связанных тел? Считать, что для каждого из них остается верным выражение
Сейчас мы покажем, что это предположение неправильно. Сохраняющаяся при движении многих тел величина существует, но она не равна сумме
а равна сумме подобных выражений, умноженных на массы соответствующих тел; иначе говоря, сохраняется сумма
Для доказательства этого важнейшего закона механики обратимся к следующему примеру.
Через блок перекинуты два груза, – большой массы
Движущей силой является разность в весе этих тел,
(
Рассмотрим два момента движения и покажем, что сумма выражений
Заглавными буквами обозначены физические величины, характеризующие большой груз. Индексы 1 и 2 относят здесь величины к двум рассматриваемым моментам движения.
Так как грузы связаны веревкой, то
Разности высот грузов, разумеется, равны (но с обратным знаком, так как один груз поднимается, а другой опускается). Таким образом,
где
На стр. 46 мы узнали, что разность квадратов скоростей
Подставляя это выражение в последнюю формулу, найдем:
(
Но это есть закон Ньютона, записанный выше для нашего примера. Этим доказано требуемое: для двух тел сумма выражений