По закону Ньютона сила равна изменению импульса в единицу времени. Обозначим изменение импульса при каждом ударе через ?. Это изменение происходит v/l раз в секунду. Значит, вклад в силу со стороны одной молекулы будет (?/lv.

На рис. 95 построены векторы импульсов до и после удара, а также вектор приращения импульса ?. Из подобия возникших при построении треугольников следует: ?/l = mv/R. Вклад в силу со стороны одной молекулы примет вид:

Так как длина хорды не вошла в формулу, то ясно, что молекулы, движущиеся по любой хорде, дают одинаковый вклад в силу. Конечно, изменение импульса при косом ударе будет меньше, но зато удары в этом случае будут чаще. Расчет показал, что оба эффекта в точности компенсируются.

Так как в сфере N молекул, то суммарная сила будет равна:

где vср – средняя скорость молекул.

Давление р газа, равное силе, поделенной на площадь сферы 4?R2, будет равно:

где V – объем сферы.

Таким образом,

Это уравнение было впервые выведено Даниилом Бернулли в 1738 г.*11.

Из уравнения состояния идеального газа следовало: pV = const·T; из выведенного уравнения видим, что pV пропорционально vср2. Значит,

т.е. скорость молекулы идеального газа пропорциональна корню квадратному из абсолютной температуры.

Закон Авогадро

Пусть вещество представляет собой смесь различных молекул. Нет ли такой физической величины, характеризующей движение, которая была бы одинакова для всех этих молекул, например для водорода и кислорода, находящихся при одинаковой температуре?

Механика дает ответ на этот вопрос. Можно доказать, что одинаковыми у всех молекул будут средние кинетические энергии поступательного движения mvср2/2 .

Это означает, что при данной температуре средние квадраты скорости молекул обратно пропорциональны массе частиц:

Вернемся теперь к уравнению pV = (1/3) Nmvср2. Так как при данной температуре величины mvср2 одинаковы для всех газов, то число молекул N, заключенных в данном объеме при определенных давлении p и температуре T, одинаково для всех газов. Этот замечательный закон был впервые сформулирован Авогадро.

Сколько же молекул приходится на 1 см3? Оказывается, в 1 см3 при 0 °C и 760 мм Hg находится 2,7·1019 молекул. Это огромное число. Чтобы вы почувствовали, сколь оно велико, приведем такой пример. Положим, что газ удаляется из маленького сосудика объемом 1 см3 с такой скоростью, что в каждую секунду уходит миллион молекул. Нетрудно подсчитать, что сосуд полностью освободится от газа через миллион лет!

Закон Авогадро указывает, что при определенных давлении и температуре отношение числа молекул к объему, в котором они заключены, N/V есть величина, одинаковая для всех газов.

Так как плотность газа ? = (N/V) m, то отношение плотностей газов равно отношению их молекулярных весов:

Относительные веса молекул могут быть поэтому установлены простым взвешиванием газообразных веществ. Такие измерения сыграли в свое время большую роль в развитии химии и имеют значение и сейчас, когда нужно найти молекулярный вес нового синтезированного вещества: надо только перевести его, не испортив, в газообразное состояние. Воздух есть смесь газов, и для того, чтобы сравнивать его плотность с плотностью других газов, удобно ввести средний молекулярный вес воздуха. Он оказывается равным 28,8. Зная эту цифру, легко находить плотность различных газов по отношению к воздуху. Например, водяной пар с молекулярным весом 18 имеет по отношению к воздуху плотность 18/28,8 = 0,62.

Скорости молекул

Теория указывает, что при одной температуре средние кинетические энергии молекул mvср2/2 одинаковы. При нашем определении температуры эта средняя кинетическая энергия поступательного движения молекул газа пропорциональна абсолютной температуре. В виде равенства этот важнейший закон записывается так:

где энергия измеряется в эргах.

Мы уже поняли ранее, что температура является какой-то мерой интенсивности теплового движения.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату