Теперь же мы видим, что измерение температуры термометром, заполненным идеальным газом, придает этой мере на редкость простой смысл. Температура пропорциональна среднему значению энергии поступательного движения молекул.
Определим среднюю скорость молекул кислорода при комнатной температуре, которую мы для круглого счета примем в 27 °C = 300 K. Молекулярный вес кислорода 32, так что вес одной молекулы равен 32/6·1023. Простое вычисление даст
Скорость броуновского движения горошины с массой в 0,1 г будет уже всего только 10 ?6 см/с. Немудрено, что мы не видим броуновского движения таких частиц.
Мы говорили о средних скоростях молекулы. Но ведь не все молекулы движутся с одинаковыми скоростями, какая-то доля молекул движется быстрее, а какая-то медленнее. Все это, оказывается, можно рассчитать. Приведем только результаты.
При температуре около 15 °C, например, средняя скорость молекул азота равна 500 м/с; со скоростями от 300 до 700 м/с движется 59 % молекул. С малыми скоростями – от 0 до 100 м/с – движется всего лишь 0,6 % молекул, Быстрых молекул со скоростями свыше 1000 м/с в газе всего лишь 5,4 % (рис. 96).
Можно рассчитать и распределение молекул по разным значениям энергии поступательного движения.
Число молекул, энергия которых более чем в два раза превосходит среднюю, уже меньше 10 %. Доля еще более «энергичных» молекул тает по мере увеличения энергии во все возрастающей степени. Так, молекул, энергия которых в 4 раза больше средней, – всего 0,7 %, в 8 раз больше средней – 0,06·10 ?4 %, в 16 раз больше средней – 2·10?8 %.
Энергия молекулы кислорода, движущейся со скоростью 11 км/с, равна 32·10?12 эрг. Средняя энергия молекулы при комнатной температуре равна всего 6·10?14 эрг.
Таким образом, энергия «одиннадцатикилометровой молекулы» по крайней мере в 500 раз больше энергии молекулы со средней скоростью. Неудивительно, что доля молекул со скоростями выше 11 км/с равна невообразимо малому числу – порядка 10?300.
Но почему нас заинтересовала скорость 11 км/с? На стр. 161 мы говорили о том, что оторваться от Земли могут лишь тела, имеющие эту скорость. Значит, забравшиеся на большую высоту молекулы могут потерять связь с Землей и отправиться в далекое межпланетное путешествие, но для этого надо иметь скорость 11 км/с. Доля таких быстрых молекул, как мы видим, настолько ничтожна, что опасность потери атмосферы Земле не грозит даже через миллиарды лет.
Скорость ухода атмосферы необычайно сильно зависит от гравитационной энергии ? (
Тепловое расширение
Если нагреть тело, то движение атомов (молекул) будет более интенсивным. Они станут расталкивать друг друга и займут больше места. Этим и объясняется хорошо известный факт: при нагревании твердые, жидкие и газообразные тела расширяются.
О тепловом расширении газов долго говорить не приходится: ведь пропорциональность температуры объему газа была положена в основу нашей температурной шкалы.
Из формулы
В обычных условиях, т.е. при комнатной температуре и нормальном атмосферном давлении, расширение большинства жидкостей раза в два-три меньше расширения газов.
Мы уже не раз говорили о своеобразии расширения воды. При нагревании от 0 до 4 °C объем воды уменьшается с нагреванием. Эта особенность в расширении воды играет колоссальную роль в жизни на Земле. Осенью по мере охлаждения воды верхние остывшие слои становятся плотнее и погружаются на дно. На их место снизу поступает более теплая вода. Но такое перемешивание происходит только до тех пор, пока температура воды не понизится до 4 °C. При дальнейшем падении температуры верхние слои уже не будут сжиматься, значит, не будут становиться тяжелее и не станут опускаться на дно. Начиная с этой температуры, верхний слой, постепенно охлаждаясь, доходит до нуля градусов и замерзает.
Только эта особенность воды и препятствует промерзанию рек до дна. Если бы вода вдруг потеряла свою замечательную особенность, даже при скромной фантазии легко представить себе бедственные последствия этого.
Тепловое расширение твердых тел существенно меньше, чем тепловое расширение жидкостей. Оно в сотни и тысячи раз меньше расширения газов.
Во многих случаях тепловое расширение является досадной помехой. Так, изменение размеров движущихся частей часового механизма с переменой температуры привело бы к изменению хода часов, если бы для этих тонких деталей не применялся особый сплав – инвар (инвариантный в переводе означает неизменный, отсюда и название «инвар»). Инвар – сталь с большим содержанием никеля – широко применяется в приборостроении. Стержень из инвара удлиняется лишь на одну миллионную долю своей длины при изменении температуры на 1 °C.
Ничтожное, казалось бы, тепловое расширение твердых тел может привести к серьезным последствиям. Дело в том, что нелегко мешать тепловому расширению твердых тел из-за их малой сжимаемости.
При нагревании на 1 °C стального стержня его длина возрастет всего на одну стотысячную, т.е. на незаметную глазом величину. Однако, чтобы воспрепятствовать расширению и сжать стержень на одну стотысячную, нужна сила в 20 кГ на 1 см2. И это только для того, чтобы уничтожить действие повышения температуры всего на 1 °C!
Распирающие силы, возникающие из-за теплового расширения, могут привести к поломкам и катастрофам, если с ними не считаться. Так, чтобы избежать действия этих сил, рельсы железнодорожного полотна укладывают с зазорами. Об этих силах приходится помнить при обращении со стеклянной посудой, которая легко трескается при неравномерном нагревании. В лабораторной практике поэтому пользуются лишенной этого недостатка посудой из кварцевого стекла (плавленый кварц – окись кремния, находящаяся в аморфном состоянии). При одном и том же нагреве медный брусок удлинится на миллиметр, а такой же брусок кварцевого стекла изменит свою длину на незаметную глазом величину 30–40 микрон. Расширение кварца настолько ничтожно, что кварцевый сосуд можно нагреть на несколько сот градусов, а потом без опасений бросить его в воду.