пересчитать эту новую единицу в другие, уже знакомые: 1 кВт·ч = 3,6·106 Дж = 861 ккал = 367 000 кГм. Читатель может спросить: неужели нужна была еще одна единица энергии? Ведь их и так уже немало! Но понятие энергии пронизывает разные области физики, и, думая об удобствах данной области, физики вводили все новые и новые единицы энергии. Это привело, наконец, к выводу о необходимости ввести единую для всех областей физики единицу энергии, что и было сделано новой системой единиц СИ (см. стр. 12). Однако еще пройдет немало времени, пока «старые» единицы уступят место счастливой избраннице, и поэтому пока киловатт-час еще не последняя единица энергии, с которой придется знакомиться в процессе изучения физики.
Коэффициент полезного действия
При помощи различных машин можно заставить источники энергии производить различную работу – поднимать грузы, двигать станки, перевозить грузы и людей.
Можно подсчитать количество энергии, вложенной в машину, и значение полученной от нее работы. Во всех случаях цифра на выходе окажется меньше, чем цифра на входе, – часть энергии теряется в машине.
Доля энергии, которая полностью используется в машине на нужные нам цели, называется коэффициентом полезного действия (КПД) машины. Значения КПД дают обычно в процентах.
Если КПД равен 90 %, это значит, что машина теряет всего 10 % энергии. КПД 10 % означает, что машина использует всего лишь 10 % поступившей в нее энергии.
Если машина превращает в работу механическую энергию, то ее КПД в принципе можно сделать очень большим. Увеличение КПД достигается в этом случае борьбой с неизбежным трением. Улучшить смазку, ввести более совершенные подшипники, уменьшить сопротивление со стороны среды, в которой происходит движение, – вот средства приблизить КПД к единице (к 100 %).
Обычно при превращении механической энергии в работу в качестве промежуточного этапа (как на гидроэлектростанциях) используют электрическую передачу. Разумеется, это тоже связано с дополнительными потерями. Однако они невелики, и потери при преобразовании механической энергии в работу и в случае использования электрической передачи могут быть сведены к нескольким процентам.
Совсем иначе обстоит дело в тех случаях, когда машина использует химическую энергию вещества.
До настоящего времени не существует работающих в большом масштабе машин, которые превращали бы энергию горючего непосредственно в механическую или электрическую энергию. Поэтому неизбежен промежуточный этап превращения химической энергии в тепловую. Для получения работы из горючего вещества его нужно сжечь и создать в каком-то объеме (печи) высокую температуру. На разности температур между печью и окружающей средой и работает тепловая машина. Она отбирает часть потока тепловой энергии и превращает его в работу. Но только часть потока и ни в каких условиях не весь поток.
Если перепад температур невелик, то в сторону удается увести лишь маленький ручеек энергии, а при температуре среды забрать тепло у источника совсем невозможно. Если перепад температур большой, то в работу удается превратить гораздо более существенную часть теплового потока.
Полезное использование тепловой энергии может происходить с тем бо?льшим успехом, чем больше разность температур источника потока тепла и окружающей среды.
Эта разность температур ставит предел возможностям усовершенствования тепловой машины. Если ликвидировать все потери в машине, создать идеальные подшипники, пользоваться не существующими в природе идеальными теплоизолирующими и теплопроводящими материалами, то КПД все равно не будет равен единице, а лишь достигнет некоторого максимума. Это предельное значение КПД при превращении в работу теплового потока, идущего от нагретого тела с температурой Т1 к среде, находящейся при температуре Т0, равно:
Так, если источник теплового потока имеет температуру 100 °C, а среда 20 °C, то максимальный КПД равен 1 ? 293/373, т.е. около 20 %. При температуре источника 1000° получим уже 76 %.
Ясно, что надо стремиться сжигать топливо так, чтобы достигнуть как можно более высокой температуры.
Из сказанного понятно, сколь невыгодно использование теплового потока для производства механической работы. В лучших современных газовых турбинах (см. стр. 381) удается достигнуть КПД всего около 45 %. Было бы лучше всего научиться превращать химическую энергию непосредственно в механическую работу, минуя тепловую. Мы знаем, что в принципе при таком прямом превращении можно было бы избежать потерь энергии. Однако, как уже говорилось, техника пока еще не решила этой задачи.
Источники энергии на Земле
Не все источники энергии равноценны. Одни представляют лишь принципиальный интерес, с другими связано существование цивилизации. Одни источники практически неисчерпаемы, другим придет конец в ближайшие столетия, а то и десятилетия.
Уже несколько миллиардов лет посылает свои живительные лучи на Землю главный опекун нашей планетной системы – Солнце. Этот источник энергии можно смело назвать неисчерпаемым. Каждый квадратный метр земной поверхности получает от Солнца энергию средней мощности около 1,5 кВт; за год это составит около 10 миллионов килокалорий энергии – такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 1014 кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче – в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).
Однако, несмотря на множество проектов, солнечная энергия используется совершенно незначительно. И правда, подсчет наш дал огромную цифру, – но ведь это количество энергии попадает во все места земной поверхности: и на склоны недоступных гор, и на поверхность океанов, занимающую большую часть земной поверхности, и на пески безлюдных пустынь.
Кроме того, совсем не так уже велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, очевидно, что заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.
Интерес к прямому использованию энергии Солнца несколько возрос в последнее время в связи с появившимися возможностями непосредственно превращать солнечную энергию в электрическую. Такая возможность, естественно, весьма привлекательна. Однако до сих пор она реализована в очень незначительной степени.
Сравнительно недавно был обнаружен аккумулятор солнечной энергии у нас над головами – в верхних слоях атмосферы. Оказалось, что кислород на высоте 150–200 км над земной поверхностью вследствие действия солнечного излучения находится в диссоциированном состоянии: его молекулы разбиты на атомы. При объединении этих атомов в молекулы кислорода могло бы выделиться 118 ккал/моль энергии. Каков же общий запас этой энергии? В слое толщиной 50 км на указанной высоте запасено 1013 ккал – столько, сколько освобождается при полном сгорании нескольких миллионов тонн