Однако проведенные в 1949-1952 гг. экспериментальные исследования и ряд выполненных теоретических работ позволили доработать
и усилить в 2-3 раза конструкцию данного типа амортизатора. Впоследствии эти амортизаторы получили широкое распространение на танках Т-55, Т-62 и танках второго послевоенного поколения конструкции УВЗ. Исключение представлял лишь опытный средний танк «Объект 140», на котором устанавливались поршневые (телескопические) гидроамортизаторы. Прогрессивность характеристики подвески этой машины была повышена за счет введения дополнительного упругого элемента – буферной пружины.



Первоначально в гидроамортизаторе в качестве рабочей жидкости использовалась смесь 10% технического этилового спирта и 90% глицерина. Однако спиртоглицериновая смесь не обладала достаточной вязкостью для обеспечения необходимого сопротивления гидроамортизатора. Кроме того, она замерзала при температуре -37°С и отличалась повышенным испарением. Для устранения указанных недостатков в гидроамортизаторе стали применять рабочую жидкость АЖ-170 (амортизационная жидкость с вязкостью 170 сСт), которая представляла собой этилполисилоксановую жидкость №5 с добавкой 5% минерального масла МС-14 для улучшения смазывающих свойств. Температура замерзания АЖ-170 составляла -65°С, а вязкость рабочей жидкости в большей степени обеспечивала необходимое сопротивление гидроамортизатора. Чрезмерное повышение вязкости рабочей жидкости тоже было нежелательным, так как это могло явиться причиной зависания опорного катка на обратном ходе или выхода из строя деталей гидроамортизатора на прямом ходе.
Гидроамортизатор двухстороннего действия увеличивал жесткость подвески, так как на прямом ходе он работал параллельно с торсионным валом и вместе с ним через балансир воспринимал толчки и удары опорных катков о неровности местности. Совместная работа гидроамортизаторов с торсионной подвеской вызывала вибрацию (тряску) танка при движении по небольшим по величине, но часто расположенным неровностям. Устранение этого явления было возможно при применении релаксационного гидроамортизатора.
Поршневой релаксационный гидроамортизатор двухстороннего действия был установлен и испытан в опытных танках «Объект 277» и «Объект 282». От обычного поршневого гидроамортизатора он отличался возможностью исключить вибрацию машины при движении по небольшим неровностям. Это достигалось благодаря тому, что сопротивление релаксационного гидроамортизатора на прямом ходе, кроме скорости перемещения, зависело и от величины перемещения (хода) опорного катка. В релаксационном гидроамортизаторе объемы рабочей жидкости над поршнем и под поршнем на прямом ходе свободно сообщались друг с другом. Рабочий объем гидроамортизатора соединялся с объемом компенсационной камеры через калиброванное отверстие малого диаметра, которое создавало значительное гидравлическое сопротивление. При движении по мелким неровностям перемещения опорных катков оказывались небольшими при любых скоростях, поэтому сопротивление релаксационных гидроамортизаторов было незначительным. Это избавляло экипаж от воздействия больших вертикальных ускорений (вибраций), неизбежных при быстром движении по мелким неровностям танка с обычными гидроамортизаторами.


При большом ходе опорного катка шток поршня, перемещаясь в рабочем объеме гидроамортизатора (поршень в этом случае можно считать отсутствующим), создавал давление 90-120 МПа (900-1200 кгс/см2) на прямом ходе. При таком давлении происходило сжатие рабочей жидкости и пропорционально возрастало сопротивление гидроамортизатора. На обратном ходе опорного катка релаксационный гидроамортизатор работал как обычный поршневой гидроамортизатор.
Такое качество релаксационного гидроамортизатора было совершенно необходимо для систем подрессоривания самоходных пусковых установок оперативно-тактических ракет. В соответствии с требованиями, предъявляемыми при перевозке ракет на СПУ, максимально допустимые значения вертикальных ускорений были значительно ограничены, поэтому на пусковых установках, созданных на базе тяжелых танков, использовались релаксационные гидроамортизаторы. На серийных тяжелых танках релаксационный гидроамортизатор не применялся из-за сложности и громоздкости конструкции, а также более напряженного температурного режима, чем у обычных гидроамортизаторов.
Наряду с лопастными амортизаторами в конце 1950-х – начале 1960-х гг. при проектировании высокоскоростных легких и средних перспективных танков получил распространение поршневой гидроамортизатор телескопического типа двухстороннего действия. Такие амортизаторы, кроме танка «Объект 140», были установлены на опытных машинах: среднем танке «Объект 430» (харьковский завод №75) и легком танке «Объект 906» (ВгТЗ). Помимо трех амортизаторов (применительно к одному борту), монтировавшихся на первых двух и задней подвесках, на танке «Объект 906» применялись дополнительные упругие элементы – буферные пружины. В буферах танка «Объект 430» в качестве упругого элемента использовались резиновые кольца.
В конструкции танка «Объект 430» была предпринята попытка реализации облегченной ходовой части с использованием гидроамортизаторов с повышенной энергоемкостью, малогабаритных опорных катков с внутренней амортизацией и поддерживающих катков. В дальнейшем эта схема ходовой части использовалась при создании ходовой части танков «Объект 432» и «Объект 434».
Результаты исследований, выполненных в Военной академии БТВ им. И.В. Сталина совместно с харьковским и ленинградским заводами при создании опытных танков, показали, что при более правильном выборе параметров подвесок с применением мощных амортизаторов, в особенности – релаксационного типа, имелись значительные возможности по повышению качества систем подрессоривания при использовании торсионной подвески. Так, опытные танки «Объект 430» и «Объект 282» с мощными амортизаторами по сравнению с серийными танками Т-54, Т-10 иТ-10М могли двигаться по значительным неровностям местности с большими скоростями без «пробоя» подвески. Однако, несмотря на определенные достижения в совершенствовании системы подрессоривания, полученные путем применения гидроамортизаторов двухстороннего действия и упругих ограничителей хода балансиров, их использование оказалось недостаточным для значительного повышения энергоемкости подвески и улучшения плавности хода танка. Увеличение энергоемкости узлов подвесок за счет увеличения динамического хода опорных катков имело ограниченные пределы вследствие невозможности значительного уменьшения диаметра катков и нависающей формы броневого корпуса, а простое повышение жесткости подвески приводило к снижению параметров плавности хода танка.
Тщательный подбор специальной легированной стали, а также внедрение в производство специальной технологии (сложная термообработка, заневоливание[48*], искусственный наклеп) позволили получить торсионные валы с высокой усталостной прочностью. В результате этих мероприятий долговечность валов возросла более чем в 10 раз, а предел упругого сопротивления увеличился в среднем на 15%. Комплекс НИР по исследованию возможности использования высокопрочных сталей для деталей, работавших при циклических нагрузках, был выполнен