во ВНИИ-100 (руководитель – B.C. Старовойтов) совместно с его московским филиалом (ФВНИИ-100) в 1955- 1961 гг.

Начиная с 1960-х гг. на танках стали устанавливаться заневоленные торсионы.

Благодаря значительному повышению допустимых рабочих напряжений в торсионных валах представилась возможность увеличить хода опорных катков и уменьшить жесткость подвески. Торсионы с повышенными касательными напряжениями были впервые применены в подвесках опытных средних танков «Объект 432» Харьковского завода им. В.А. Малышева и «Объект 167» конструкции УВЗ, что совместно с установкой мощных амортизаторов благоприятно сказалось на плавности хода этих машин.

Торсионные валы танка «Объект 432», а затем и «Объект 434», обрабатывались на повышенную твердость (d =2,6-2,8 мм), упрочнялись накаткой роликом и дважды заневоливались, первый раз – перед упрочняющей накаткой, второй – после этой операции. В результате такой обработки представилось возможным поднять допустимые рабочие напряжения до 1294,9 МПа (13200 кгс/см2) вместо 784,8 МПа (8000 кгс/см2) для валов, изготовленных по старой технологии, что позволило значительно уменьшить длину и массу торсиона. Короткие торсионные валы в этих танках располагались соосно и крепились в опорах, вваривавшихся посредине днища танка.

Возросшие динамические режимы движения танка «Объект 432», обусловленные высокими значениями удельной мощности в сочетании с облегченной ходовой частью, привели к высокой нагруженности и напряженности ее узлов. Ресурс ходовой части не превышал 1000 км. Потребовалось проведение больших исследовательских, технологических и экспериментально-доводочных работ по повышению ее ресурса. Эти работы с 1960 г. велись во ВНИИ-100 под руководством В.Г. Левашова, а с 1964 г. – А.П. Софияна.

При доводке ходовой части танка «Объект 432» выявились проблемы, которые с ходовыми частями других марок боевых машин раньше не возникали. К числу проблем в части системы подрессоривания относились: обеспечение нормальной работы высоконапряженных шлицевых головок торсионных валов при несоосности и эллипсности ответных сопрягаемых деталей корпуса танка, а также телескопического гидроамортизатора при больших тепловыделениях, несмотря на то, что количество амортизаторов применительно к одному борту было увеличено до трех (два амортизатора устанавливались на первых двух подвесках и один – на задней). Крепление торсионов в средней опоре на днище обусловило значительную его нагруженность при закручивании торсионов, что вызывало деформацию днища и нарушение центровки агрегатов, расположенных на нем. В результате в процессе эксплуатации машины наблюдалось разрушение сварных швов опор и трещин на днище корпуса. Дополнительно накладывались трудности, связанные с гусеничным движителем (опорные и поддерживающие катки, траки). Для решения проблем с ходовой частью этих машин в помощь ВНИИ-100 был привлечен ряд специализированных научных организаций, в частности: ВНИТИ (Ленинград), НИИ резиновой промышленности (НИИРП), НИИ шинной промышленности (НИИШП), московский филиал ВНИИ-100, ЦНИИ материалов (ЦНИИМ, Москва). В дальнейшем даже при совместной работе ресурс ходовой части танка «Объект 434» (Т-64А) лишь за десять лет удалось довести до 6000 км.

Одновальная соосная торсионная подвеска танка «Объект 432».

Схема размещения гидравлических подвесок на опытном танке Т-34-85.

Гидравлическая подвеска танка Т-34-85:а – внешний вид; б – продольный разрез.

Рабочее напряжение торсионов, используемых в подвеске танка «Объект 167», было увеличено до 1196,8 МПа (12200 кгс/см2) за счет изменения твердости материала (d0TI, =2,65-2,85 мм), заневоливания и повышения усилия накатки стержня и шлицев. Кроме того, конструктивно увеличили рабочую длину торсионов с одновременным уменьшением его диаметра до 46 мм. Все выполненные мероприятия позволили (по сравнению с танком Т-62) получить большую потенциальную энергию как каждого торсиона, так и всей подвески в целом и увеличить динамический ход опорных катков до 242 мм.

В целях увеличения долговечности высокопрочных торсионных валов для использования в системе подрессоривания высокоскоростных боевых машин в филиале ВНИИ-100 провели исследования возможности повышения свойств стали 45ХН2МФА электрошлакового переплава. В результате появились технические условия на сталь 45ХН2МФ-Ш, обеспечивавшей повышение долговечности торсионных валов в 2 раза при сохранении упругих свойств и пластичности при кручении. Впоследствии эта сталь была внедрена в серийное производство для изготовления всех высокопрочных торсионных валов.

Как показали дальнейшие испытания танков, при установке высокопрочных торсионных валов доля потенциальной энергии пружинных ограничителей хода балансиров оказалась незначительной по сравнению с энергией основного упругого элемента подвески, поэтому на танках второго послевоенного поколения эти ограничители уже не применялись.

В результате выполненных НИР по совершенствованию танковых подвесок отечественными специалистами был сделан вывод о том, что более рациональными являлись подвески с нелинейной характеристикой и с прогрессивным возрастанием сопротивления при движении опорного катка вверх (характеристика имела пологую часть около статического положения, быстронарастающую жесткость на основной части рабочего хода и переход снова на пологую часть к концу рабочего хода с целью ограничения максимальных усилий). Требуемая характеристика могла быть получена двумя способами: применением подвески с металлическими упругими элементами, амортизаторов и упругих ограничителей хода балансиров, поскольку ее возможности в этом отношении еще не были исчерпаны, и внедрением пневматических, гидравлических или гидропневматических подвесок. Характеристики подвесок с неметаллическими упругими элементами наиболее полно отвечали требуемой характеристике. Конструкция этих подвесок позволяла совместить упругий и демпфирующий элементы в одном агрегате, обеспечив выигрыш как по массе, так и по компоновочным решениям. Однако создание таких подвесок было сопряжено с затруднениями при отработке уплотнений подвижных деталей и полости высокого давления цилиндра, которые должны надежно функционировать длительное время при высоких давлениях.

Для проверки возможности создания работоспособной гидравлической подвески еще в 1953 г. была сконструирована и изготовлена опытная система подрессоривания для танка Т-34-85, состоявшая из десяти гидравлических рессор с балансирами. В опытном образце гидравлической подвески максимальное давление рабочей жидкости в рессоре составляло 196 МПа (2000 кгс/см2), расстояние между центрами проушин рессоры – 900 мм, наружный диаметр корпуса рессоры – 130 мм, масса рессоры – 53 кг. В качестве рабочей жидкости применялась крем-неорганическая жидкость, разработанная ВИАМ.

Сравнительные испытания двух танков Т-34-85 (одного – с гидравлической подвеской и другого – с серийной пружинной подвеской) показали преимущества гидравлической подвески. Оба танка имели одинаковую боевую массу и двигатели одинаковой мощности. Средняя скорость движения по ухабистой дороге для танка с серийной подвеской составила 20 км/ч, для танка с гидравлической подвеской – 31,7 км/ч, причем в последнем случае полностью отсутствовали удары в ограничители хода балансиров.

Кроме получения требуемой нелинейной характеристики для повышения плавности хода танка, использование гидравлической подвески позволяло уменьшить высоту корпуса и боевую массу танка за счет расположения элементов подвески снаружи броневого корпуса, не занимая внутреннего объема машины. Размеры гидравлической рессоры были значительно меньше, чем размеры других типов упругих элементов,

С середины 1950-х гг. в Ленинграде во ВНИИ-100 совместно с Институтом физики высоких давлений (ИФВД) АН СССР развернулись работы (руководитель – В.М. Зубков) по созданию системы подрессоривания с гидравлической подвеской для повышения плавности хода опытного четырехгусеничного тяжелого танка «Объект 279». В этой нерегулируемой подвеске при больших давлениях использовался эффект сжимаемости полисилоксановой[49*] жидкости №5, применявшейся в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату