Опорные катки с наружной амортизацией, диски которых изготавливались из легких сплавов (алюминия, магния и титана), прошли испытания на опытных танках ВгТЗ и УВЗ. На опытных средних танках «Объект 140», «Объект 430», «Объект432», «Объект 434», Т-62М, легких К-90 (на первом образце – полоз) и «Объект 906» были применены поддерживающие катки, хотя на серийных машинах (кроме тяжелых) они не устанавливались. Поддерживающие катки были как односкатными (одно-бандажными), так и двухскатными; имели наружную или внутреннюю амортизацию. Однобандажные катки располагались асимметрично относительно продольной оси гусеницы. Такое их расположение в гусеничном обводе способствовало неравномерному износу обода, появлению дополнительных нагрузок в гусенице и в других элементах движителя. Для снижения влияния этих отрицательных факторов однобандажные поддерживающие катки впоследствии стали располагать в шахматном порядке.

Направляющие колеса послевоенных танков имели стальные ободы и были недостаточно надежны. Для повышения надежности направляющих колес на опытном танке «Объект 434» стали монтировать направляющие колеса с внутренней амортизацией, взаимозаменяемые с опорными катками. Направляющие колеса, взаимозаменяемые с опорными катками, устанавливались и на тяжелых танках ИС-4 и Т-10.

Механизм натяжения гусеницы с направляющим колесом танка ИС-4 (Т- 10).

Механизм натяжения гусеницы с направляющим колесом танка Т-54.

Механизм натяжения гусеницы с направляющим колесом танка «Объект 432».

Компенсирующее устройство натяжения гусеницы танка «Объект 906».

Гидравлический механизм натяжения с направляющим колесом танка «Объект 911 Б».

Гидравлический механизм натяжения с направляющим колесом танка «Объект 775».

В первый послевоенный период получили широкое распространение кривошипно-винтовые (на тяжелых танках) и кривошипно-чер-вячные (на средних танках) механизмы натяжения гусениц. При регулировке натяжения гусениц они требовали обязательной остановки танка и выхода экипажа из машины, что было крайне нежелательным при совершении форсированных маршей и действиях на зараженной местности.

Для сохранения постоянства натяжения гусениц во время движения танка по неровностям для опытного легкого танка «Объект 906» было разработано компенсирующее устройство, обеспечивавшее автоматическое выбирание слабины гусеницы. Кроме уменьшения рывков и динамических перегрузок гусениц, компенсирующее устройство уменьшало вероятность спадания гусениц при движении машины. В этих целях качающиеся направляющие колеса соединялись рычагами с передними опорными катками и перемещались одновременно с ними при колебаниях корпуса машины. Однако из-за значительной перегрузки шин и подшипников передних опорных катков вследствие натяжения гусениц, передаваемого на опорные катки через компенсирующее устройство, указанная конструкция распространения в отечественных танках не получила. Дальнейшие работы по совершенствованию механизмов натяжения были направлены на создание такого механизма, который позволял бы механику-водителю, не выходя из машины, изменять натяжение гусениц в соответствии с условиями движения.

Механизмы такого типа создали в конструкторском бюро ВгТЗ под руководством И.В. Гавалова и испытали в начале 1960-х гг. на опытных легких танках «Объект 906Б» и «Объект 911 Б». Это были гидравлические механизмы натяжения с кнопочным управлением с места механика-водителя и с указателем степени натяжения гусениц. Они располагались внутри корпуса и позволяли регулировать натяжение одной или одновременно двух гусениц как на стоянке, так и при движении танка. Время натяжения гусениц не превышало 4 с. Кроме того, эти механизмы позволяли регулировать положение обвода гусеничного движителя при изменении клиренса.

Несколько иная конструкция натяжного и компенсирующего механизма гусеницы при изменении клиренса была разработана в 1963 г. в конструкторском бюро ЧТЗ для опытного танка «Объект 775». Этот механизм монтировался снаружи корпуса машины и представлял собой единый узел, состоявший из двух гидроцилиндров, расположенных один в другом. Внутренний цилиндр служил для предварительного натяжения гусеницы, наружный обеспечивал поддержание постоянства натяжения гусеницы при опускании машины на упоры.

Достоинства гидравлических механизмов натяжения были использованы в дальнейшем при решении вопросов по устранению сброса гусеницы во время поворота машины, повышению средних скоростей движения и проходимости боевых гусеничных машин.

48* Заневоливание – специальная технологическая операция в процессе изготовления торсионных валов, при которой они подвергаются закрутке на значительно больший угол, чем это происходит при эксплуатации машины. При этом в наружных слоях сечения торсиона при раскрутке вала возникают остаточные напряжения, противоположные напряжениям во внутренних слоях. В связи с более равномерным распределением рабочих напряжений по сечению заневоленного вала предел упругого сопротивления повышается на величину остаточных напряжений.

49* Полисилоксановая жидкость №5 представляет собой органическое масло на кремнистой основе. При давлении 294 МПа (3000 кгс/см!) относительное изменение объема жидкости составляло 12,896.

50* Физический смысл удельной потенциальной энергии – максимальная высота, с которой танк под действием своей массы падает на ровную твердую поверхность, и при этом балансиры касаются ограничителей хода без удара.

51* Сильфон – тонкостенная цилиндрическая оболочка с поперечной гофрированной боковой поверхностью; расширяется или сжимается вдоль оси (подобно пружине) под действием разности давления внутри и снаружи или от внешнего силового воздействия.

52* Гадолиний – металл, имеющий плотность 7,89 г/см3 и температуру плавления 1312'С. Назван в честь химика, члена-корреспондента Петербургской академии наук финна Юхана Гадолина, открывшего в конце XVIII века смесь окислов редкоземельных элементов, в состав которой входил и этот химический элемент.

53* Борирование – технологический процесс, который использовался для насыщения бором поверхности стального пальца трака с ОМШ с целыо достижения высокой износостойкости при его работе в абразивной среде. Зерна абразива, имея твердостъ ниже, чем у борированного слоя, не вкрапливались в поверхность пальца, а скользили по ней, уменьшая тем самым износ сопряженных проушин трака. Глубина борирования составляла 0,15-0,2мм, время борирования – 2,5-3,0 ч. Применялось электролизное борирование стальных пальцев в жидкой среде при

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату