С новой версией DeleteObject код клиентов SpecialString выглядит так:
void doSomething()
{
deque<SpecialString*> dssp;
...
for_each(dssp.begin(),dssp.end(),
DeleteObject());// Четко определенное поведение
}
Такое решение прямолинейно и безопасно по отношению к типам, что и требовалось.
Однако безопасность исключений все еще не достигнута. Если исключение произойдет после создания SpecialString оператором new, но перед вызовом foreach, снова произойдет утечка ресурсов. Проблема решается разными способами, но простейший выход заключается в переходе от контейнера указателей к контейнеру
Библиотека STL не содержит умных указателей с подсчетом ссылок. Написание хорошего умного указателя (то есть такого, который бы всегда правильно работал) — задача не из простых, и заниматься ею стоит лишь в случае крайней необходимости. Я привел код умного указателя с подсчетом ссылок в «More Effective С++» в 1996 году. Хотя код был основан на хорошо известной реализации умного указателя, а перед изданием книги материал тщательно проверялся опытными программистами, за эти годы было найдено несколько ошибок. Количество нетривиальных сбоев, возникающих при подсчете ссылок в умных указателях, просто невероятно (за подробностями обращайтесь к списку опечаток и исправлений для книги «More Effective С++» [28]).
К счастью, вам вряд ли придется создавать собственные умные указатели, поскольку найти проверенную реализацию не так сложно. Примером служит указатель shared_ptr из библиотеки Boost (совет 50). Используя shared_ptr, можно записать исходный пример данного совета в следующем виде:
void doSomething() {
typedef boost::shared_ptr<Widget> SPW; //SPW = 'shared pointer
// to Widget'
vector<SPW> vwp;
for (int i=0;i<SOME_MAGIC_NUMBER;++i) //Создать SPW no Widget*
vwp.push_back(SPW(new Widget));//и вызвать push_back
//Использовать vwp
}//Утечки Widget не происходит.
//даже если в предыдущем фрагменте
//произойдет исключение
Главное, что необходимо запомнить: контейнеры STL разумны, но они не смогут решить, нужно ли удалять хранящиеся в них указатели. Чтобы избежать утечки ресурсов при работе с контейнерами указателей, необходимо либо воспользоваться объектами умных указателей с подсчетом ссылок (такими, как shared_ptr из библиотеки Boost), либо вручную удалить каждый указатель при уничтожении контейнера.
Напрашивается следующая мысль: если структура DeleteObject помогает справиться с утечкой ресурсов для контейнеров, содержащих указатели на объекты, можно создать аналогичную структуру DeleteArray, которая поможет избежать утечки ресурсов для контейнеров с указателями на массивы. Конечно, такое решение
Совет 8. Никогда не создавайте контейнеры, содержащие auto_ptr
Честно говоря, в книге, посвященной эффективному использованию STL, данный совет не совсем уместен. Контейнеры auto_ptr (СОАР, Containers Of Auto_Ptr) запрещены, а программа, которая попытается их использовать, не будет компилироваться. Комитет по стандартизации С++ приложил неслыханные усилия в этом направлении. Возможно, мне вообще не стоило бы говорить о контейнерах auto_ ptr — о них вам расскажет компилятор, причем в самых нелестных выражениях.
Однако многие программисты работают на платформах STL, на которых СОАР не запрещены. Более того, многие программисты по-прежнему подвержены иллюзии и видят в СОАР простое, прямолинейное, эффективное средство для борьбы с утечкой ресурсов, часто присущей контейнерам указателей (советы 7 и 33). В результате возникает искушение воспользоваться СОАР, даже если их невозможно создать.
Вскоре я объясню, почему СОАР произвели такой переполох, что Комитет по стандартизации предпринял специальные шаги по их запрещению. А пока начнем с первого недостатка, для понимания которого не нужно разбираться в auto_ptr и вообще в контейнерах: СОАР не переносимы. Да и как может быть иначе? Они запрещены стандартом С++, и наиболее передовые платформы STL уже выполняют это требование. Вероятно, со временем платформы STL, которые сейчас не соответствуют Стандарту, выполнят его требования. Когда это произойдет, программы, использующие СОАР, станут еще менее переносимыми, чем сейчас. Тот, кто заботится о переносимости своих программ, отвергнет СОАР хотя бы по этой причине.
Впрочем, не исключено, что переносимость вас не волнует. Если это так, позвольте напомнить об уникальном (а по мнению некоторых — нелепом) смысле операции копирования auto_ptr.
При копировании auto_ptr право владения объектом, на который ссылается указатель, переходит к копии, а исходному указателю присваивается NULL. Да, вы не ошиблись:
auto_ptr<Widget> pw1(new Widget); //pw1 ссылается на Widget
auto_ptr<Widget> pw2(pw1); //pw2 ссылается на объект Widget,
//принадлежащий pw1; pw1 присваивается
//NULL (таким образом, объект Widget
//передается от pw1 к pw2)
pwl = pw2; //pw1 снова ссылается на Widget:
//pw2 присваивается NULL
Конечно, такое поведение необычно и даже по-своему интересно, но для пользователя STL в первую очередь важно то, что оно приводит к
bool WidgetAPCompare(const auto_ptr<Widget>& Ihs.
const auto_ptr<Widget>& rhs)
{
return *lhs < *rhs;// Предполагается, что для объектов Widget
// существует оператор <
}
vector<auto_ptr<Widget> > widgets; // Создать вектор и заполнить его
// указателями auto_ptr на Widget. // Помните, что этот фрагмент // не должен компилироваться!
sort(widgets.begin(),widgets.end(), // Отсортировать вектор
widgetAPCompare);
Пока все выглядит вполне разумно, да и с концептуальной точки зрения все
Оказывается, реализация sort часто строится на некой разновидности алгоритма быстрой сортировки. Работа этого алгоритма строится на том, что некоторый элемент контейнера выбирается в качестве «опорного», после чего производится рекурсивная сортировка по значениям, большим и меньшим либо равным значению опорного элемента. Реализация такого алгоритма в sort может выглядеть примерно так:
template<class RandomAccessIterator, // Объявление sort скопировано
class Compare>// прямо из Стандарта
void sort(RandomAccessIterator first,
RandomAccessIterator last,
Compare comp)
{
// typedef описывается ниже
typedef typename iterator_traits<RandomAccessIterator>::value_type
ElementType;
RandomAccessIterator i;
...// Присвоить i указатель на опорный элемент
ElementType pivotValue(*i); // Скопировать опорный элемент в локальную
...// временную переменную; см. далее комментарий.
// Остальная сортировка
}