которой начинается настоящий совет.
Допустим, имеется вектор vector<int>. Из этого вектора требуется удалить все элементы, значение которых меньше х, но оставить элементы, предшествующие последнему вхождению значения, не меньшего у.
Нетрудно придти к общей схеме решения:
•поиск последнего вхождения значения в векторе требует применения find или find_if с обратными итераторами;
•удаление элементов требует erase или идиомы erase-remove.
Объединяя эти две идеи, мы получаем следующий псевдокод, где «нечто» обозначает код, который еще не был наполнен смысловым содержанием:
v.erase(remove_if(find_if(v.rbegin(). v.rend().
v.end());
При наличии такой схемы рассчитать, что же кроется за «нечто», совсем несложно. Вы не успеете опомниться, как придете к решению из исходного примера. Во время написания программы подобные решения выглядят вполне логичными, поскольку в них отражается последовательное применение базовых принципов (например, идиомы erase-remove плюс использование find с обратными итераторами). К сожалению, читателю вашей программы будет очень трудно разобрать готовый продукт на те идеи, из которых он был собран. «Нечитаемый» код легко пишется, но разобраться в нем трудно.
Впрочем, «нечитаемость» зависит от того, кто именно читает программу. Как упоминалось выше, некоторые программисты С++ вполне нормально относятся к конструкциям вроде приведенной в начале этого совета. Если такая картина типична для среды, в которой вы работаете, и вы ожидаете, что она останется таковой в будущем, не сдерживайте свои творческие порывы. Но если ваши коллеги недостаточно уверенно владеют функциональным стилем программирования и не столь хорошо разбираются в STL, умерьте свои амбиции и напишите что- нибудь вроде альтернативного решения, приведенного выше.
Банальный факт из области программирования: код чаще читается, чем пишется. Хорошо известно также, что на сопровождение программы уходит значительно больше времени, чем на ее разработку. Если программу нельзя прочитать и понять, ее нельзя и успешно сопровождать, а такие программы вообще никому не нужны. Чем больше вы работаете с STL, тем увереннее себя чувствуете и тем сильнее хочется использовать вложенные вызовы функций и создавать объекты функций «на лету». В этом нет ничего плохого, но всегда следует помнить, что написанную сегодня программу завтра придется кому-то читать — может быть, даже вам. Приготовьтесь к этому дню.
Да, используйте STL в своей работе. Используйте хорошо и эффективно... но избегайте написания «нечитаемого» кода. В долгосрочной перспективе такой код будет каким угодно, но только не эффективным.
Совет 48. Всегда включайте нужные заголовки
При программировании в STL нередко встречаются программы, которые успешно компилируются на одной платформе, но требуют дополнительных директив #include на другой. Этот раздражающий факт связан с тем, что Стандарт С++ (в отличие от Стандарта С) не указывает, какие стандартные заголовки могут или должны включаться в другие стандартные заголовки. Авторы реализаций пользуются предоставленной свободой и выбирают разные пути.
Попробую пояснить, что это значит на практике. Однажды я засел за пять платформ STL (назовем их А, В, С, D и Е) и попробовал экспериментальным путем определить, какие стандартные заголовки можно убрать, чтобы программа при этом нормально компилировалась. По этим данным становится ясно, какие заголовки включают другие заголовки директивой
•на платформах А и С <vector> включает <string>;
•на платформе С <algorithm> включает <string>;
•на платформах С и D <iostream> включает <iterator>;
•на платформе D <iostream> включает <string> и <vector>;
•на платформах D и Е <string> включает <algorithm>;
•во всех пяти реализациях <set> включает <functional>
За исключением последнего случая мне так и не удалось провести программу с убранным заголовком мимо реализации В. По закону Мэрфи вам всегда придется вести разработку на таких платформах, как А, С, D и Е, и переносить программы на такие платформы, как В, особенно когда это очень важная работа, которую необходимо сделать как можно скорее. Так бывает всегда.
Но не стоит осуждать компиляторы или разработчиков библиотек за трудности с переносом. Пропущенные заголовки на вашей ответственности. При каждой ссылке на элементы пространства имен std вы также отвечаете за включение соответствующих заголовков. Если заголовки опущены, программа теоретически может откомпилироваться, но другие платформы STL имеют полное право отвергнуть ваш код.
Чтобы вам было проще запомнить необходимые заголовки, далее приведена краткая сводка содержимого всех стандартных заголовков, относящихся к STL.
•Почти все контейнеры объявляются в одноименных заголовках, то есть vector
объявляется в заголовке <vector>
•Все алгоритмы, за исключением четырех, объявляются в заголовке <algorithm>. Исключениями являются алгоритмы accumulate (см. совет37), inner_poduct, adjacent_difference и partial_sum. Эти алгоритмы объявляются в заголовке <numeric>.
•Специализированные разновидности итераторов, включая istream_iterator и streambuf_iterator (см. совет 29), объявляются в заголовке <iterator>.
•Стандартные функторы (например less<T>) и адаптеры функторов (например not1 и bnd2nd) объявляются в заголовке <functional>.
Не забывайте включать соответствующую директиву
Совет 49. Научитесь читать сообщения компилятора
При определении вектора в программе вы имеете полное право указать конкретный размер:
vector<int> v(10); // Создать вектор из 10 элементов
Объекты string имеют много общего с vecto
string s(10);// Попытаться определить string из 10 элементов
Однако эта команда не компилируется, поскольку у контейнера string не существует конструктора, вызываемого с аргументом типа int. На одной из платформ STL компилятор реагирует на эту команду следующим образом:
example.cpp(20):error С2664:'))thiscall std::basic_string<char.struct std::char_ traits<char>,class std::allocator<char> >::std::basic_string<char.struct std::char_ traits<char>.class std::allocator<char> >(const class std::allocator<char>&)':cannot convert parameter 1 from 'const int' to 'const class std::allocator<char>&' Reason: cannot convert from 'const int' to 'const class std::allocator<char>' No constructor could take the source type, or constructor overload resolution was ambiguous
Ну как, впечатляет? Первая часть сообщения выглядит как беспорядочное нагромождение символов, вторая часть ссылается на распределитель памяти, ни разу не упоминавшийся в исходном тексте, а в третьей части что-то говорится о вызове конструктора. Конечно, третья часть содержит вполне точную информацию, но для начала разберемся с первой частью, типичной для диагностики, часто встречающейся при работе со string.
Вспомните, что string — не самостоятельный класс, а простой синоним для следующего типа:
basic_string<chaг,char_traits<char>,allocator<char> >
Это связано с тем, что понятие строки С++ было обобщено до последовательности символов произвольного типа, обладающих произвольными характеристиками («traits») и хранящихся в памяти, выделенной произвольными распределителями. Все string-подобные объекты С++ в действительности являются специализациями шаблона basic_string, поэтому при диагностике ошибок, связанных с неверным использованием string, большинство компиляторов упоминает тип basic_string (некоторые компиляторы любезно включают в диагностику имя string, но большинство из них этого не делает). Нередко в диагностике указывается на принадлежность basic_string (а также вспомогательных шаблонов char_traits и allocator) к пространству имен std, поэтому в сообщениях об ошибках, связанных с использованием string, нередко упоминается тип
std::basic_string<char.std::char_traits<char>.std::allocator<char> >
Такая запись весьма близка к той, что встречается в приведенной выше диагностике, но разные компиляторы могут описывать string по-разному. На другой платформе STL ссылка на string выглядит иначе:
basic_string<char,string_char_traits<char>,__default_alloc_template<false,0> >
Имена string_char_traits и default_alloc_template не являются стандартными, но такова жизнь. Некоторые реализации STL отклоняются от Стандарта. Если вам не нравятся отклонения в текущей реализации STL, подумайте, не стоит ли перейти на другую реализацию. В совете 50 перечислены некоторые ресурсы, в которых можно найти альтернативные реализации.
Независимо от того, как тип string упоминается в диагностике компилятора, методика приведения диагностики к осмысленному минимуму остается той же: хитроумная конструкция с basic_string заменяется текстом «string». Если вы используете компилятор командной строки, задача обычно легко решается при помощи программы sed или сценарных языков типа Perl, Python или Ruby (пример сценария приведен в статье Золмана (Zolman) «Аn STL Error Message Decryptor for Visual С++» [26]). В приведенном примере производится глобальная замена фрагмента
std::basic_string<char,struct std::char_traits<char>,class std::allocator<char>>
строкой string, в результате чего будет получено следующее сообщение:
example.срр(20):еггог С2664:'))thscall string::string(const class std::allocator<char>&)':cannot convert parameter 1 from 'const int' to 'const class std::allocator<char>&'
Из этого сообщения можно понять, что проблема связана с типом параметра, переданного конструктору string. Несмотря на загадочное упоминание allocator<char>, вам не составит труда просмотреть различные формы конструкторов string и убедиться в том, что ни одна из этих форм не вызывается только с аргументом размера.
Кстати, упоминание распределителя памяти (allocator