физики, химии и биологии, и тогда неизбежна путаница. Мы уже видели это и увидим еще не один раз.
О понятии работы мы будем говорить в следующей главе.
МЕРА ДВИЖЕНИЯ. — РАБОТА[311]
«Напротив, я до сих пор всегда находил, что основные понятия этой области» (т. е. «основные физические понятия работы и ее неизменности») «с большим трудом даются тем лицам, которые не прошли через школу математической механики, несмотря на все усердие с их стороны, на все их способности и даже на довольно высокий уровень естественнонаучных знаний. Нельзя не признать также того, что это — абстракции совершенно особого рода. Ведь даже такому мыслителю, как И. Кант, понимание их далось нелегко, о чем свидетельствует его полемика с Лейбницем по этому вопросу».
Так говорит Гельмгольц («Научно-популярные доклады», вып. II, Предисловие).
Таким образом, мы вступаем теперь в очень опасную область, тем более, что у нас нет возможности провести читателя «через школу математической механики». Но, может быть, удастся показать, что там, где дело идет о понятиях, диалектическое мышление приводит по меньшей мере к столь же плодотворным результатам, как и математические выкладки.
Галилей открыл, с одной стороны, закон падения, согласно которому пройденные падающими телами пути пропорциональны квадратам времен падения. Наряду с этим он выставил, как мы увидим, не вполне соответствующее этому закону положение, что количество движения какого-нибудь тела (его impeto или momento
Гюйгенс нашел уже, что в случае упругого удара сумма произведений масс на квадраты скоростей остается неизменной до удара и после него и что аналогичный закон имеет силу для различных других случаев движения соединенных в одну систему тел.
Лейбниц был первым, кто заметил, что Декартова мера движения противоречит закону падения. Но, с другой стороны, нельзя было отрицать того, что Декартова мера оказывается во многих случаях правильной. Поэтому Лейбниц разделил движущие силы на мертвые и живые. Мертвыми силами были «давления», или «тяга», покоящихся тел; за меру их он принимал произведение массы на скорость, с которой двигалось бы тело, если бы из состояния покоя оно перешло в состояние движения; за меру же живой силы — действительного движения тела—он принял произведение массы на квадрат скорости. И эту новую меру движения он вывел прямо из закона падения.
«Необходима», — рассуждал Лейбниц, — «одна и та же сила как для того, чтобы поднять тело весом в четыре фунта на один фут, так и для того, чтобы поднять тело весом в один фунт на четыре фута. Но проходимые телом пути пропорциональны квадрату скорости, ибо если тело упало на четыре фута, то оно приобрело двойную скорость по сравнению с той скоростью, которую оно имеет, когда падает на один фут. Но при своем падении тела приобретают силу, с помощью которой они могут снова подняться на ту же самую высоту, с которой упали; следовательно, силы пропорциональны квадрату скорости» (Зутер, «История математических наук», ч. II, стр. 367)[312].
А далее Лейбниц доказал, что мера движения
Картезианцы протестовали изо всех сил, и тогда загорелся знаменитый, длившийся много лет спор, в котором принял участие в первом своем сочинении («Мысли о правильной оценке живых сил», 1746)[314] также и Кант, хотя он и неясно разбирался в этом вопросе. Теперешние математики относятся с изрядной дозой презрения к этому «бесплодному» спору, который
«затянулся больше чем на сорок лет, расколов математиков Европы на два враждебных лагеря, пока наконец Д'Аламбер своим «Трактатом о динамике» (1743), точно каким-то суверенным решением, не положил конец этому
Но ведь казалось бы, что не может все же целиком сводиться к бесполезному спору о словах спор, начатый таким мыслителем, как Лейбниц, против такого мыслителя, как Декарт, и столь занимавший такого человека, как Кант, что он посвятил ему свою первую печатную работу — довольно объемистый том. И действительно, как согласовать, что движение имеет две противоречащие друг другу меры, что оно оказывается пропорциональным то скорости, то квадрату скорости? Зутер слишком легко отделывается от этого вопроса: он утверждает, что обе стороны были правы и обе же — неправы; «выражение «живая сила» сохранилось, тем не менее, до настоящего времени; но
Таким образом,
Возьмем, однако, в руки спасительный «Трактат о динамике»[315] и вглядимся пристальнее в «суверенное решение» Д'Аламбера. Оно находится
В тексте, — читаем мы там, — весь вопрос совсем не рассматривается из-за «совершенной бесполезности его для механики» [стр. XVII].
Это вполне верно для
Но так как столь крупные ученые занимались этим вопросом, то он, Д'Аламбер, все же хочет вкратце разобрать его в Предисловии. Под силой движущихся тел можно, если ясно мыслить, понимать только их способность преодолевать препятствия или сопротивляться им. Поэтому сила не должна измеряться ни через
Но существует три рода препятствий: 1) непреодолимые препятствия, которые совершенно уничтожают движение и которые уже поэтому не могут иметь отношения к рассматриваемой проблеме; 2) препятствия, сопротивления которых как раз достаточно для прекращения движения и которые это делают мгновенно: это случай равновесия; 3) препятствия, прекращающие движение лишь постепенно: это случай замедленного движения [стр. XVII—XVIII]. «Но все согласны с тем, что равновесие между двумя телами имеет место тогда, когда произведения их масс на их виртуальные скорости, т. е. на скорости, с которыми они стремятся двигаться, у обоих равны. Следовательно, при равновесии произведение массы на скорость — или, что одно и то же, количество движения — может представлять силу. Все согласны также с тем, что в случае замедленного движения число преодоленных препятствий пропорционально квадрату скорости, так что тело, которое сжало, например, при известной скорости одну пружину, сможет при двойной скорости сжать сразу или последовательно не две, а четыре пружины, подобные первой; при тройной скорости — девять пружин и т. д. Отсюда сторонники живых сил» (лейбницианцы) «умозаключают, что сила действительно движущихся тел вообще пропорциональна произведению массы на квадрат скорости. По существу, в чем заключалось бы неудобство, если бы мера сил была различной в случае равновесия и в случае замедленного движения? Ведь если желать рассуждать, руководствуясь только ясными идеями, то под словом