противоречить друг другу в своих результатах, а должны согласоваться между собой. Факт этот является бессознательной и безусловной предпосылкой нашего теоретического мышления. Материализм XVIII века вследствие своего по существу метафизического характера исследовал эту предпосылку только со стороны ее содержания. Он ограничился доказательством того, что содержание всякого мышления и знания должно происходить из чувственного опыта, и восстановил положение: nihil est in intellectu, quod non fuerit in sensu[463]. Только новейшая идеалистическая, но вместе с тем и диалектическая философия — в особенности Гегель — исследовала эту предпосылку также и со стороны формы. Несмотря на бесчисленные произвольные построения и фантастические выдумки, которые здесь выступают перед нами; несмотря на идеалистическую, на голову поставленную форму ее результата — единства мышления и бытия, — нельзя отрицать того, что эта философия доказала на множестве примеров, взятых из самых разнообразных областей, аналогию между процессами мышления и процессами природы и истории — и обратно — и господство одинаковых законов для всех этих процессов. С другой стороны, современное естествознание расширило тезис об опытном происхождении всего содержания мышления в таком смысле, что совершенно опрокинуты были его старая метафизическая ограниченность и формулировка. Современное естествознание признаёт наследственность приобретенных свойств и этим расширяет субъект опыта, распространяя его с индивида на род: теперь уже не считается необходимым, чтобы каждый отдельный индивид лично испытал все на своем опыте; его индивидуальный опыт может быть до известной степени заменен результатами опыта ряда его предков. Если, например, у нас математические аксиомы представляются каждому восьмилетнему ребенку чем-то само собой разумеющимся, не нуждающимся ни в каком опытном доказательстве, то это является лишь результатом «накопленной наследственности». Бушмену же или австралийскому негру вряд ли можно втолковать их посредством доказательства.

В помещенном выше сочинении [Т. е. в «Анти-Дюринге» (см. настоящий том, стр. 145). Ред.] диалектика рассматривается как наука о наиболее общих законах всякого движения. Это означает, что ее законы должны иметь силу как для движения в природе и человеческой истории, так и для движения мышления. Подобный закон может быть познан в двух из этих трех областей и даже во всех трех без того, чтобы рутинеру-метафизику стало ясно, что он имеет дело с одним и тем же законом.

Возьмем пример. Из всех теоретических успехов знания вряд ли какой-нибудь считается столь высоким триумфом человеческого духа, как изобретение исчисления бесконечно малых во второй половине XVII века. Если уж где-нибудь мы имеем перед собой чистое и исключительное деяние человеческого духа, то именно здесь. Тайна, окружающая еще и в наше время те величины, которые применяются в исчислении бесконечно малых, — дифференциалы и бесконечно малые разных порядков, — является лучшим доказательством того, что все еще распространено представление, будто здесь мы имеем дело с чистыми «продуктами свободного творчества и воображения» [См. настоящий том, стр. 36. Ред.] человеческого духа, которым ничто не соответствует в объективном мире. И тем не менее справедливо как раз обратное. Для всех этих воображаемых величин природа дает нам прообразы.

Наша геометрия исходит из пространственных отношений, а наша арифметика и алгебра — из числовых величин, соответствующих нашим земным отношениям, т. е. соответствующих тем телесным величинам, которые механика называет массами, как они встречаются на Земле и приводятся в движение людьми. По сравнению с этими массами масса Земли является бесконечно большой и трактуется земной механикой как бесконечно большая величина. Радиус Земли = оо, таков принцип всей механики при рассмотрении закона падения. Однако не только Земля, но и вся солнечная система и все встречающиеся в ней расстояния оказываются, со своей стороны, опять-таки бесконечно малыми, как только мы переходим к тем расстояниям, которые имеют место в наблюдаемой нами с помощью телескопа звездной системе и которые приходится определять световыми годами. Таким образом, мы уже имеем здесь перед собой бесконечные величины не только первого, но и второго порядка, и можем предоставить фантазии наших читателей, если им это нравится, построить себе в бесконечном пространстве еще и дальнейшие бесконечные величины более высоких порядков.

Но согласно господствующим теперь в физике и химии взглядам, земные массы, тела, с которыми имеет дело механика, состоят из молекул, из мельчайших частиц, которые нельзя делить дальше, не уничтожая физического и химического тождества рассматриваемого тела.

Согласно вычислениям У. Томсона, диаметр наименьшей из этих молекул не может быть меньше одной пятидесятимиллионной доли миллиметра[464]. Но даже если мы допустим, что наибольшая молекула достигает диаметра в одну двадцатипятимиллионную долю миллиметра, то и в этом случае молекула все еще остается исчезающе малой величиной по сравнению с наименьшей массой, с какой только имеют дело механика, физика и даже химия. Несмотря на это, молекула обладает всеми характерными для соответствующей массы свойствами; она может представлять в физическом и химическом отношении эту массу и, действительно, представляет ее во всех химических уравнениях. Короче говоря, молекула обладает по отношению к соответствующей массе совершенно такими же свойствами, какими обладает математический дифференциал по отношению к своей переменной, с той лишь разницей, что то, что в случае дифференциала, в математической абстракции, представляется нам таинственным и непонятным, здесь становится само собой разумеющимся и, так сказать, очевидным.

Природа оперирует этими дифференциалами, молекулами, точно таким же образом и по точно таким же законам, как математика оперирует своими абстрактными дифференциалами. Так, например, дифференциал от X будет 3x2dx, причем мы пренебрегаем 3xdx2 и dx3. Если мы сделаем соответствующее геометрическое построение, то получим куб, длина стороны которого х увеличивается на бесконечно малую величину dx. Допустим, что этот куб состоит из какого-нибудь легко возгоняемого химического элемента, скажем, из серы; допустим, что поверхности трех из его граней, образующих один угол, защищены, а поверхности трех других граней свободны. Если мы поместим этот серный куб в атмосферу из паров серы и в достаточной степени понизим температуру этой атмосферы, то пары серы начнут осаждаться на трех свободных гранях нашего куба. Мы не выйдем за пределы обычных для физики и химии приемов, если, желая представить себе этот процесс в чистом виде, мы допустим, что на каждой из этих трех граней осаждается сперва слой толщиной в одну молекулу. Длина стороны куба х увеличилась на диаметр одной молекулы, на dx. Объем же куба х3 увеличился на разность между х3 и х3 + 3x2dx + 3xdx2 + dx3, причем мы с тем же правом, как и математика, можем пренебречь dx3, т. е. одной молекулой, и 3xdx2, т. е. тремя рядами, длиной в х + dx, линейно расположенных молекул. Результат одинаков: приращение массы куба равно 3x2dx.

Строго говоря, у серного куба не бывает dx3 и 3xdx2, ибо две или три молекулы не могут находиться в одном и том же месте пространства, и прирост его массы поэтому точно равен 3x2dx + 3xdx + dx. Это объясняется тем, что в математике dx есть линейная величина, но таких линий, не имеющих толщины и ширины, в природе самостоятельно, как известно, не существует, и, следовательно, математические абстракции имеют безусловную значимость только в пределах чистой математики, А так как и эта последняя пренебрегает 3xdx2 + dx3, то здесь не получается никакой разницы.

Точно так же обстоит дело и при испарении. Когда в стакане воды испаряется верхний слой молекул, то высота всего слоя воды х уменьшается на dx, и дальнейшее улетучивание одного слоя молекул за другим фактически есть продолжающееся дальше дифференцирование. А когда под влиянием давления и охлаждения горячий пар в каком-нибудь сосуде

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату