снова сгущается, превращаясь в воду, и один слой молекул отлагается на другом (причем мы вправе отвлечься от усложняющих процесс побочных обстоятельств), пока сосуд не заполнится доверху, то перед нами здесь имеет место в буквальном смысле интегрирование, отличающееся от математического интегрирования лишь тем, что одно совершается сознательно человеческой головой, а другое бессознательно природой.
Но процессы, совершенно аналогичные процессам исчисления бесконечно малых, имеют место не только при переходе из жидкого состояния в газообразное и наоборот. Когда движение массы как таковое прекратилось в результате толчка и превратилось в теплоту, в молекулярное движение, то что же произошло, как не дифференцирование движения массы? А когда молекулярные движения пара в цилиндре паровой машины суммируются в том направлении, что они на определенную высоту поднимают поршень, превращаясь в движение массы, то разве они здесь не интегрируются? Химия разлагает молекулы на атомы, величины, имеющие меньшую массу и протяженность, но представляющие собой величины того же порядка, что и первые, так что молекулы и атомы находятся в определенных, конечных отношениях друг к другу. Следовательно, все химические уравнения, выражающие молекулярный состав тел, представляют собой по форме дифференциальные уравнения. Но в действительности они уже интегрированы благодаря фигурирующим: в них атомным весам. Химия оперирует такими дифференциалами, взаимоотношение величин которых известно.
Но атомы отнюдь не являются чем-то простым, не являются вообще мельчайшими известными нам частицами вещества. Не говоря уже о самой химии, которая все больше и больше склоняется к мнению, что атомы обладают сложным составом, большинство физиков утверждает, что мировой эфир, являющийся носителем светового и теплового излучения, состоит тоже из дискретных частиц, столь малых, однако, что они относятся к химическим атомам и физическим молекулам так, как эти последние к механическим массам, т. е. относятся как
Итак, какого бы взгляда ни придерживаться относительно строения материи, не подлежит сомнению то, что она расчленена на ряд больших, хорошо отграниченных групп с относительно различными размерами масс, так что члены каждой отдельной группы находятся со стороны своей массы в определенных, конечных отношениях друг к другу, а к членам ближайших к ним групп относятся как к бесконечно большим или бесконечно малым величинам в смысле математики. Видимая нами звездная система, солнечная система, земные массы, молекулы и атомы, наконец, частицы эфира образуют каждая подобную группу. Дело не меняется от того, что мы находим промежуточные звенья между отдельными группами: так, например, между массами солнечной системы и земными массами мы встречаем астероиды, — из которых некоторые имеют не больший диаметр, чем, скажем, княжество Рейс младшей линии [465], — метеориты и т. д.; так, между земными массами и молекулами мы встречаем в органическом мире клетку. Эти промежуточные звенья доказывают только, что в природе нет скачков
Когда математика оперирует действительными величинами, она тоже без дальних околичностей применяет это воззрение. Для земной механики уже масса Земли является бесконечно большой; в астрономии земные массы и соответствующие им метеориты выступают как бесконечно малые; точно таким же образом исчезают для нее расстояния и массы планет солнечной системы, лишь только астрономия, выйдя за пределы ближайших неподвижных звезд, начинает изучать строение нашей звездной системы. Но как только математики укроются в свою неприступную твердыню абстракции, так называемую чистую математику, все эти аналогии забываются; бесконечное становится чем-то совершенно таинственным, и тот способ, каким с ним оперируют в анализе, начинает казаться чем-то совершенно непонятным, противоречащим всякому опыту и всякому смыслу. Те глупости и нелепости, которыми математики не столько объясняли, сколько извиняли этот свой метод, приводящий странным образом всегда к правильным результатам, превосходят самое худшее, действительное и мнимое, фантазерство натурфилософии (например, гегелевской), по адресу которого математики и естествоиспытатели не могут найти достаточных слов для выражения своего ужаса. Они сами делают — притом в гораздо большем масштабе — то, в чем они упрекают Гегеля, а именно доводят абстракции до крайности. Они забывают, что вся так называемая чистая математика занимается абстракциями, что
(Плохое воспроизведение тождества мышления и бытия у Геккеля. Но и
Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только
Применение математики: в механике твердых тел абсолютное, в механике газов приблизительное, в механике жидкостей уже труднее; в физике больше в виде попыток и относительно; в химии простейшие уравнения первой степени; в биологии = 0.
[МЕХАНИКА И АСТРОНОМИЯ]
Пример необходимости диалектического мышления и того, что в природе нет неизменных категорий и отношений: закон падения, который становится неверным уже при продолжительности падения в несколько минут, ибо в этом случае уже нельзя без ощутительной погрешности принимать, что радиус Земли = да, и притяжение Земли возрастает, вместо того чтобы оставаться равным самому себе, как предполагает закон падения Галилея. Тем не менее, этот закон всё еще продолжают преподавать без соответствующих оговорок!
Ньютоновское притяжение и центробежная сила — пример метафизического мышления: проблема не решена, а только