day, run off for tennis, and work half the night. His interest was so primarily active [and] instrumental and mine just the opposite.” They rode horses together, Lawrence in jodhpurs and using an English saddle in the American West — to distance himself, Oppenheimer thought, from the farm. When Lawrence could get away they went off on long recreational drives in the Reo to Yosemite and Death Valley.
A distinguished experimentalist from the University of Hamburg, Otto Stern, a Breslau Ph.D., forty-one that year and on his way to a Nobel Prize (though Lawrence would beat him), gave Lawrence the necessary boost. Sometime after the Christmas holidays the two men dined out in San Francisco, a pleasant ferry ride across the unbridged bay. Lawrence rehearsed again his practiced story of particles spinning to boundless energies in a confining magnetic field, but instead of coughing politely and changing the subject, as so many other colleagues had done, Stern produced a Germanic duplicate of Lawrence's original enthusiasm and barked at him to leave the restaurant immediately and go to work. Lawrence waited in decency until morning, cornered one of his graduate students and committed him to the project as soon as he had finished studying for his Ph.D. exam.
The machine that resulted looked, in top and side views, like this:
The two cylinders of the Wideroe accelerator have become two brass electrodes shaped like the cut halves of a cylindrical flask. These are contained completely within a vacuum tank and the vacuum tank is mounted between the round, flat poles of a large electromagnet.
In the space between the two electrodes (which came to be called
The scattering problem solved itself at low accelerations when Livingston thought to remove the fine grid of wires installed in the gap between the dees that kept the accelerating electric field out of the drift space inside. The electric fields between the dee edges suddenly began functioning as lenses, focusing the spiraling particles by deflecting them back toward the middle plane. “The intensity then became a hundred times what it was before,” Livingston says. That effect was too weak to confine the higher-speed particles. Livingston turned his attention to magnetic confinement. He suspected the particle beam lost focus at higher speeds because the pole faces of the magnet were not completely true, a lack of uniformity which in turn caused irregularities in the magnetic field. Impulsively he cut sheets of iron foil into small shims “having a shape much like an exclamation point,” as Lawrence and he would write in the
Assuming then a voltage amplification of 500, the production of 25,000,000 volt-protons [!] would require 50,000 volts at a wave-length of 14 meters applied across the accelerators; thus, 25,000 volts on each accelerator with respect to ground. It does appear entirely feasible to do this.
The magnet for that one would weigh eighty tons, heavier than any machine used in physics up to that time. Lawrence, now a full professor, was already raising funds.
In his graduate-student days in Europe Robert Oppenheimer told a friend that he dreamed of founding a great school of theoretical physics in the United States — at Berkeley, as it happened, the second desert after New Mexico that he chose to colonize. Ernest Lawrence seems to have dreamed of founding a great laboratory. Both men coveted success and, each in his own way, the rewards of success, but they were differently driven.
Oppenheimer's youthful preciosity matured in Europe and the early Berkeley years into refinement that was usually admirable if still sometimes exquisite. Oppenheimer crafted that persona for himself at least in part from a distaste for vulgarity that probably originated in rebellion against his entrepreneurial father and that was not without elements of anti-Semitic self-hatred. Along the way he convinced himself that ambition and worldly success were vulgar, a conviction bolstered nicely by trust fund earnings to the extent of ten thousand dollars a year. Thereby he confounded his own strivings. The American experimental physicist 1.1. Rabi would later question why “men of Oppenheimer's gifts do not discover everything worth discovering.” His answer addresses one possible source of limitation:
It seems to me that in some respects Oppenheimer was overeducated in those fields which lie outside the scientific tradition, such as his interest in religion, in the Hindu religion in particular, which resulted in a feeling for the mystery of the universe that surrounded him almost like a fog. He saw physics clearly, looking toward what had already been done, but at the border he tended to feel that there was much more of the mysterious and novel than there actually was… Some may call it a lack of faith, but in my opinion it was more a turning away from the hard, crude methods of theoretical physics into a mystical realm of broad intuition.
But Oppenheimer's revulsion from what he considered vulgar, from just those “hard, crude methods” to which Rabi refers, must have been another and more directly punishing confusion. His elegant physics, so far as an outsider can tell — his scientific papers are nearly impenetrable to the non-mathematician and deliberately so — is a physics of bank shots. It works the sides and the corners and uses the full court but prefers not to drive relentlessly for the goal. Wolfgang Pauli and the hard, distant Cambridge theoretician Paul A. M. Dirac, Eugene Wigner's brother-in-law, both mathematicians of formidable originality, were his models. Oppenheimer first described the so-called tunnel effect whereby an uncertainly located particle sails through the electrical barrier around the nucleus on a light breeze of probability, existing — in particle terms — then ceasing to exist, then instantly existing again on the other side. But George Gamow, the antic Russian, lecturing in Cambridge, devised the tunnel-effect equations that the experimenters used. Hans Bethe in the late 1930s first defined the mechanisms of carbon-cycle thermonuclear burning that fire the stars, work which won for him the Nobel Prize; Oppenheimer looked into the subtleties of the invisible cosmic margins, modeled the imploding collapse of dying suns and described theoretical stellar objects that would not be discovered for thirty and forty years — neutron stars, black holes — because the instruments required to detect them, radio telescopes and X-ray satellites, had not been invented yet. (Alvarez believes if Oppenheimer had lived long enough to see these developments he would have won a Nobel Prize for his work.) That was originality not so much ahead of its time as outside the frame.
Some of this psychological and creative convolution winds through a capsule essay on the virtues of discipline that Oppenheimer composed within a letter to his brother Frank in March 1932, when he was not quite twenty-eight years old, It is worth copying out at length; it hints of the long, self-punishing penance he expected to serve to cleanse any stain of crudity from his soul:
You put a hard question on the virtue of discipline. What you say is true: I do value it — and I think that you do too — more than for its earthly fruit, proficiency. I think that one can give only a metaphysical ground for this evaluation; but the variety of metaphysics which gave an answer to your question has been very great, the metaphysics themselves very disparate: the bhagavad gita, Ecclesiastes, the Stoa, the beginning of the Laws, Hugo of St Victor, St Thomas, John of the Cross, Spinoza. This very great disparity suggests that the fact that discipline is good for the soul is more fundamental than any of the grounds given for its goodness. I believe that through discipline, though not through discipline alone, we can achieve serenity, and a certain small but precious measure of freedom from the accidents of incarnation, and charity, and that detachment which preserves the world which it renounces. I believe that through discipline we can learn to preserve what is essential to our happiness in more and more adverse circumstances, and to abandon with simplicity what would else have seemed to us indispensable; that we come a little to see the world without the gross distortion of personal desire, and in seeing it so, accept more easily our earthly privation and its earthly horror — But because I believe that the reward of discipline is
