Разрушение нашего зависящего от техники общества в припадке ядерного неистовства было бы губительным даже в том случае, если бы многие миллионы людей остались в живых.

Среда, к которой мы приспособились, исчезла бы, и демон Дарвина, не задумываясь, беспощадно стер бы человечество с лица Земли.

12. Высота самого высокого

Большинство из нас считают поверхность Солнца довольно горячей. Судя по типу ее излучения, температура ее равна примерно 6 тысячам градусов.

Однако Homo sapiens с его маленькими горячими руками может добиться и более высоких температур. При взрыве атомной бомбы легко достигается температура выше 100 тысяч градусов.

Но для природы и это, конечно, не предел. Температуру солнечной короны оценивают примерно в 1 миллион градусов, а температуру центра Солнца — примерно в 20 миллионов градусов.

И эту температуру человек перекрыл. При взрыве водородной бомбы развивается температура примерно 100 миллионов градусов.

И все-таки природа превысила эту рекордную температуру: центральные области некоторых очень горячих звезд (Солнце — лишь среднетеплая звезда), как свидетельствуют оценки, могут достигать температур до 2 миллиардов градусов.

Два миллиарда градусов — температура значительная (даже по сравнению с температурой самого жаркого дня в Нью-Йорке). Но вот вопрос: до каких пределов она может расти? Есть ли у нее потолок?

Иными словами, как горячо самое горячее?

Это все равно что спросить: как высоко самое высокое? И я не стал бы тратить время на такие вопросы, если бы в нашем XX веке кое-что из самого высокого уже не было тщательно определено.

Например, в добрые старые времена ньютоновской физики считалось, что скорость не имеет предела. Вопрос «какова быстрота самого быстрого» не знал ответа. Появился Эйнштейн, который выдвинул положение, ныне признанное всеми, что скорость света — это максимально возможная скорость и равна она 299 779 километрам в секунду. Ныне считают, что это и есть быстрейшее из быстрых.

Так почему же не говорить и о наивысшей температуре?

Мне хочется заняться этим вопросом еще и потому, что можно по ходу дела затронуть проблему различных температурных шкал, а ее обсуждение было бы, бесспорно, полезно для читателя.

Например, почему я придерживался температурной шкалы Кельвина, приводя цифры в предыдущих абзацах? Была бы какая-нибудь разница, если бы я воспользовался другой температурной шкалой? Если бы была, то какая и почему? Ну, что ж, давайте выясним.

* * *

Измерение температуры — дело новое, известное всего лет триста пятьдесят. Чтобы прийти к измерению температуры, нужно было сначала осознать, что существуют явные физические особенности, изменяющиеся более или менее плавно в соотношении с нашими субъективными ощущениями перемены от «холодного» к «теплому». А коль скоро такое свойство замечено и измерено количественно, мы можем заменить субъективное «что-то жарко становится» объективным «термометр показывает на три градуса больше». Одна из самых подходящих физических особенностей, которую, наверное, замечали случайно очень многие люди, — это способность вещества при нагревании расширяться, а при охлаждении сжиматься. Первым, однако, кто попытался использовать ее для измерения температуры, был итальянский физик Галилео Галилей. В 1603 году он опустил перевернутую пробирку с нагретым воздухом в чашу с водой. Охладившись до комнатной температуры, воздух сжался, и вода в пробирке поднялась. Галилей сразу сообразил, в чем дело. Уровень воды продолжал меняться вместе с изменениями комнатной температуры. Воду выталкивало вниз, когда воздух в пробирке нагревался и расширялся, и втягивало в пробирку, когда воздух в ней охлаждался и сжимался. Так Галилео создал термометр (что по-гречески значит «измеритель тепла»). Единственным его недостатком было то, что воздух имел доступ в чашу с водой, а атмосферное давление то и дело менялось. Это тоже заставляло уровень воды то подниматься, то опускаться независимо от температуры и путало расчеты.

К 1654 году великий герцог тосканский Фердинанд II изобрел термометр, который не был подвержен влиянию атмосферного давления. На этот раз в закупоренную трубочку была помещена жидкость, которая сама, расширяясь и сжимаясь, указывала изменение температуры. Объем жидкостей изменяется не так заметно, как объем газов, но, использовав большой резервуар, из которого жидкость могла вытесняться лишь в очень тонкую трубку, Фердинанд легко следил по падениям и повышениям уровня жидкости в трубке даже за самыми малыми изменениями объема.

Это был первый довольно точный термометр и один из немногих случаев, когда голубая кровь внесла вклад в развитие науки.

* * *

С повышением точности измерений постепенно зрела мысль, что, вместо того чтобы просто наблюдать, как повышается и понижается уровень жидкости в трубке, следует нанести на ней через равные интервалы отметки, которые обозначали бы точные количественные меры температуры. В 1701 году Исаак Ньютон предложил поместить термометр в тающий лед и пометить на нем уровень жидкости нулем, а при температуре человеческого тела — числом 12 и получившийся промежуток разделить на 12 равных частей.

Использование двенадцатиградусной шкалы для измерения таких температур было логичным. Англичане питают особое пристрастие к двенадцатиричной системе, а надо ли напоминать, что Ньютон был англичанином? В футе 12 дюймов, в аптекарском фунте 12 унций, в фунте стерлингов 12 шиллингов, в дюжине 12 единиц и в гроссе 12 дюжин. Почему бы и не быть 12 градусам в температурной шкале? Делить шкалу мельче, на числа кратные 12 (скажем, на 24 или 36 градусов), не имело смысла, так как прибор не позволял измерять температуры с такой точностью.

Но в 1714 году немецкий физик Габриэль Даниэль Фаренгейт сделал значительный шаг вперед. В первых термометрах использовались либо вода, либо спирт. Однако вода замерзает и термометр перестает работать уже при не очень низкой температуре, а спирт закипает, приводя в негодность термометр, при температуре совсем не высокой. Фаренгейт решил использовать ртуть. Она остается жидкой даже при температуре значительно ниже точки замерзания воды и не закипает при температуре гораздо более высокой, чем точка кипения спирта. Более того, ртуть расширяется и сжимается под влиянием температуры более равномерно, чем вода или спирт. Использовав ртуть, Фаренгейт сделал наилучшие из известных тогда термометров.

В своем ртутном термометре Фаренгейт использовал предложение Ньютона, но внес в него кое-какие изменения. Он не взял точку замерзания воды за нуль (может быть, потому, что зимой температура нередко опускается ниже этой точки, а Фаренгейт не хотел усложнять шкалу отрицательными делениями). Вместо этого он решил, что нулевой будет самая низкая температура, какую ему удастся получить в своей лабораторий, а получал он ее, смешивая тающий лед и соль.

Затем он пометил цифрой 12 температуру человеческого тела (как и предлагал Ньютон), но и это ненадолго. Термометр Фаренгейта был так хорош, что делить шкалу лишь грубо на 12 градусов не было никакой необходимости.

Термометр Фаренгейта мог мерить температуру в 8 раз точнее, поэтому Фаренгейт принял температуру человеческого тела за 96 градусов.

При такой шкале точка замерзания воды была немного ниже 32, а точка кипения — немного ниже 212. Фаренгейт, должно быть, обратил внимание на одно счастливое совпадение: разница между двумя этими точками составляет 180 градусов, а число 180 необыкновенно удобно: ведь его можно без остатка

Вы читаете Вид с высоты
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату