противодействовать этому и восстановить равновесие, температура в центре звезды должна повыситься.

В конце концов температура поднимается так высоко, что «воспламеняются» ядра атомов гелия; они вступают в реакции синтеза и образуют еще более сложные ядра. Пока продолжается этот процесс, температура все растет, и постепенно образуются все более сложные атомы. В конце концов получаются атомы железа.

Самыми сложными атомами, которые могут образоваться в результате обыкновенных звездных реакций, являются именно атомы железа. Никакое дальнейшее усложнение ядер не станет источником энергии. Атомы более сложные, чем атомы железа, сами становятся «потребителями» энергии. Поэтому для обычных процессов в звездах появление железа — это уже тупик.

Такая звезда напоминает луковицу, так как ее слои имеют различный химический состав. В самом центре звезды находится железное ядро, окруженное слоем кремния, затем следуют слои магния, углерода, гелия и, наконец, слой водорода, который образует поверхность звезды.

В каждом слое непрерывно идут реакции слияния ядер, в результате которых образуются более тяжелые ядра, опускающиеся в очередной нижний слой; в конечном счете больше всех от этого выигрывает железное ядро, а проигрывает наружная водородная оболочка. Поле тяготения продолжает увеличиваться, но теперь в центре нет дополнительного источника энергии, который бы поддерживал равновесие.

Поскольку центр продолжает разогреваться, то после какого-то критического предела звезда вдруг сжимается. При этом внезапно увеличивается давление в верхних слоях, где еще имеется ядерное горючее, необходимое для реакций синтеза; эти реакции ускоряются, и выделяется колоссальное количество энергии, что кончается взрывом, «вдребезги» разносящим звезду.

В результате взрыва возникает гигантская сверхновая звезда, энергия которой создает условия для синтеза (слияния) даже атомов железа и образования еще более сложных атомов… вплоть до урана и, весьма возможно, калифорния. Взрыв рассеивает эти тяжелые элементы в космосе, и образуются новые звезды и звездные системы (вроде нашей), которые сначала включают небольшие количества материи.

Означает ли это, что каждая звезда на какой-то поздней стадии своего существования обречена на то, чтобы стать сверхновой? По-видимому, нет.

Чем массивнее звезда, тем сильнее ее поле тяготения и, следовательно, выше внутренняя температура и больше светимость на данной стадии цикла ядерных реакций. (Это и есть «зависимость масса — светимость», открытая в 1924 году английским астрономом Артуром С. Эддингтоном. Он первым подсчитал чудовищную температуру звездных недр.) По-видимому, для того чтобы наступила стадия, когда происходит взрыв и образование сверхновой звезды, ее масса с самого начала должна по крайней мере в 1,5 раза превышать массу нашего Солнца. Это «предел Чандрасекара», названный так в честь астронома, который первым его вычислил. Итак, что бы ни случилось с нашим Солнцем, сверхновой звездой оно никогда не станет. Оно даже не сможет разогреться как следует.

* * *

Но какой именно ядерный процесс ведет к этому катастрофическому сжатию и взрыву? И, в частности, какова температура в центре звезды, которая вот-вот должна стать сверхновой? По-видимому, это и будет самая высокая температура во Вселенной, а ее-то доктор Чу и хотел узнать.

Оказывается, звезды теряют энергию двумя способами. Они испускают и электромагнитное излучение, и нейтрино, которые ведут себя по-разному. Электромагнитное излучение так сильно взаимодействует с материей, что гамма-лучи, образовавшиеся в центре Солнца, то и дело сталкиваются с протонами, нейтронами и альфа-частицами, поглощаются, снова испускаются и так далее. Это длительный и сложный процесс, поскольку излучение должно пробиться из самых недр Солнца к его поверхности.

Лучшее подтверждение — тот факт, что поверхность Солнца, оказывается, нагрета до каких-то 6000 градусов. По земным представлениям она горячая. Однако не следует забывать, что поверхность Солнца находится всего в 700 тысячах километров от скопления вещества, температура которого равна 20 миллионам градусов. Если бы между солнечным ядром и точкой, удаленной от него на 700 тысяч километров, не было ничего, то любое вещество в этой точке приобрело бы температуру порядка миллионов градусов. Сам факт, что вещество в этой точке имеет температуру всего 6000 градусов, показывает, каким великолепным теплоизолятором является вещество Солнца и как трудно излучению пробиться сквозь это вещество и уйти в пространство.

Однако энергия, которую уносят нейтрино, ведет себя по-другому. Нейтрино просто уносятся из центра Солнца, где они образуются, со скоростью света. Они совершенно игнорируют обычное вещество Солнца и проходят сквозь него менее чем за 3 секунды.

Но доля энергии Солнца, которая улетучивается в виде нейтрино, довольно мала. Потеря энергии, связанная с «побегом» нейтрино, вызывает, конечно, некоторое небольшое охлаждение недр Солнца, но это способствует только незначительному сокращению размеров светила (настолько незначительному, что его нельзя обнаружить).

А на тех стадиях, когда образуются атомы более сложные, чем атомы гелия, случаи рождения нейтрино становятся еще более редкими, если принимать во внимание только превращение протонов в нейтроны и наоборот.

Предположим, что для начала у нас имеется 56 ядер водорода. Они превращаются в 14 ядер гелия, которые в свою очередь на более поздних стадиях существования звезд превращаются в 1 ядро атома железа.

56 ядер водорода состоят из 56 протонов.

14 ядер гелия состоят из 28 протонов и 28 нейтронов, разделившихся на группы по 2 протона и по 2 нейтрона в каждой.

Один атом железа состоит из 26 протонов и 30 нейтронов, скучившихся в одном ядре.

Значит, при превращении водорода в гелий 28 протонов должны превратиться в 28 нейтронов и, кроме того, дать 28 нейтрино.

При превращении гелия в железо только 2 протонам нужно превратиться в нейтроны и дать всего лишь 2 нейтрино.

Казалось бы, возникновение нейтрино существенно только в стадии превращения водорода в гелий, и поскольку оно играет незначительную роль в «функционировании» Солнца, где превращение водорода в гелий происходит в грандиозных масштабах, то тем более ничтожна его роль в «функционировании» звезд, где «сгорают» гелий и еще более сложные ядра.

Вот здесь пора сказать о новых предположениях доктора Чу, который считает, что нейтрино образуются двумя новыми способами: во-первых, в результате взаимодействия квантов электромагнитного излучения и, во-вторых, в результате взаимодействия электрона и позитрона.

При таких низких температурах, как какие-то жалкие 20 миллионов градусов, эти реакции происходят в недрах Солнца столь редко, что случаи образования нейтрино вследствие таких процессов можно не принимать во внимание. Однако с повышением температуры число образующихся нейтрино становится все более значительным.

Если температура достигает 1–2 миллиардов градусов (эта температура требуется для образования ядер атомов железа), то появление нейтрино в результате реакций доктора Чу происходит гораздо быстрее, чем при превращении протонов в нейтроны и наоборот.

Это означает, что значительная часть излучения звезды, а именно ее электромагнитное излучение, которое очень медленно покидало недра звезды, превращается в нейтрино, которые мгновенно улетучиваются. Тем не менее звезда может постепенно, хотя и с трудом, восполнить потерянную энергию за счет сжатия, не ведущего к катастрофе.

Но если температура в недрах звезды достигнет 6 миллиардов градусов, то нейтрино образуются так быстро, что теплота звездных недр уносится всего за 15–20 минут, и звезда катастрофически сжимается!

Одно мгновение — и вот вам сверхновая звезда!

Другими словами, температуры выше 6 миллиардов градусов в нашей Вселенной не бывает. Самое

Вы читаете Вид с высоты
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату