причем гипотезы, физически непонятные. Но «непонятное» для Ньютона в XIX в. обрело совсем иной смысл.
IX
Релятивистский мир
Великий архитектор Вселенной все более представляется нам чистым математиком.
Мы останемся верными принципу относительности в его наиболее широком смысле, если придадим такую форму законам [природы], что они окажутся применимы в любой четырехмерной системе координат.{11}
Величайший переворот в физике начался совсем незаметно, когда в 1881 г. американские физики решили поставить эксперимент, который показал бы, что Земля движется в покоящемся эфире. Этот эксперимент, основанный на очень простом принципе, задумал и осуществил Альберт А. Майкельсон (1852- 1931).
Как показывают несложные вычисления, чтобы спуститься на веслах вниз по реке на определенное расстояние и подняться вверх по течению на то же расстояние, требуется больше времени, чем для прохождения того же расстояния туда и обратно в стоячей воде. (Об этой задаче мы упоминали в гл. I, говоря об ошибках интуиции.) Например, если, двигаясь на веслах в стоячей воде, человек достигает скорости 4 км/ч, то путь 12 км в одном направлении и 12 км обратно он преодолевает за 6 ч. Но в реке, скорость течения которой равна 2 км/ч, он будет двигаться по течению со скоростью (4 + 2) = 6 км/ч, а против течения со скоростью (4 ? 2) = 2 км/ч, поэтому на весь путь туда и обратно у него уходит (2 + 6) = 8 ч. Общий принцип состоит в том, что если какая-то постоянная скорость (например, скорость течения) препятствует движению более продолжительное время, чем способствует ему, то общий итог сводится не к выигрышу, а к потере времени.
Рис. 35.
Майкельсон и впоследствии его сотрудник Эдвард У. Морли (1838-1923), воспользовавшись этим принципом, поставили следующий эксперимент. Из точки
Перед физиками встала проблема, от которой нельзя было отмахнуться. Эфир как «переносчик» света должен был быть покоящейся средой, в которой движется Земля, но это предположение расходилось с результатом эксперимента. Пренебречь несоответствием теории итогу столь фундаментального эксперимента было невозможно, тем более что к тому времени многие физики уже прониклись убеждением в необходимости коренного пересмотра некоторых разделов своей науки.
В конце XIX в. представители математического направления в физике столкнулись с еще одной трудностью. Чтобы понять, в чем именно она состояла, нам придется совершить небольшой экскурс в прошлое. Ньютон считал пространство и время абсолютными и в «Математических началах натуральной философии» определял их следующим образом: «Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью… Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным» ([19], с. 30). Понятия абсолютного пространства и времени Ньютон рассматривал как объективную реальность в независимости от материальных тел или человеческого опыта. Ньютон был убежден в том, что эти понятия известны наблюдателю, неизмеримо превосходящему мудростью человека, — Богу. Идеальные формулировки математических и физических законов этого мира, по мнению Ньютона, есть не
Разумеется, Ньютон понимал, что человек не располагает знанием абсолютного пространства и абсолютного времени. Поэтому он высказал предположение о существовании инерциальных наблюдателей — таких, для которых выполняется первый закон Ньютона. Напомним, что, согласно этому закону, тело, если на него не действует сила, сохраняет состояние покоя или равномерного и прямолинейного движения.
Если один инерциальный наблюдатель задан, то можно указать множество других инерциальных наблюдателей, покоящихся или движущихся друг относительно друга равномерно и прямолинейно. Каждый из этих наблюдателей движется в так называемой инерциальной системе отсчета. Поясним это понятие на простом примере. Предположим, что пассажир судна, идущего с постоянной скоростью, перемещается с постоянной скоростью с места на место и измеряет расстояния, на которые он передвигается. Одновременно наблюдатель, находящийся на берегу, также измеряет расстояние между начальным и конечным положениями пассажира. Ясно, что относительно берега пассажир перемещается на большее расстояние. Расхождение в результатах измерений пассажира и наблюдателя на берегу нетрудно объяснить, если учесть движение судна. Перед нами две системы отсчета: одна связана с наблюдателем на берегу, другая — с пассажиром судна.
Рассмотрим две системы отсчета, которые движутся относительно друг друга равномерно и