Прямоугольные координаты здесь не очень подходят, так как для их построения необходимы прямые, которые отсутствуют на сфере. В качестве координат какой-либо точки на сфере можно было бы взять, например, широту и долготу. Еще одна проблема возникает при попытке определить кратчайшие пути из одной точки в другую. Наш повседневный опыт, интерпретированный всеведущими математиками, подсказывает, что кратчайшими путями на поверхности сферы являются дуги больших кругов (например, меридианы), т.е. кругов, центр которых совпадает с центром Земли. Эти дуги и есть «прямые» в сферической геометрии. Продолжая изучать геометрию поверхности сферы, мы обнаружили бы немало странных теорем. Например, сумма углов треугольника, образованного дугами больших кругов, т.е. отрезками «прямых» сферической геометрии, больше 180°.

В своей знаменитой работе, опубликованной в 1827 г., Гаусс исподволь проводил следующую мысль: если мы изучаем поверхности как независимые пространства, то соответствующие этим пространствам двумерные геометрии могут оказаться весьма причудливыми в зависимости от формы поверхностей. Например, эллипсоидальная поверхность, имеющая форму мяча для регби, имеет иную геометрию, нежели сферическая поверхность.

А как обстоит дело на сфере с «параллельными»? Поскольку любые два больших круга пересекаются не один раз, а дважды, в сферической геометрии нам не обойтись без аксиомы, гласящей, что любые две «прямые» пересекаются в двух точках. Совершенно ясно, что геометрия поверхности сферы будет неевклидовой; впоследствии она получила название удвоенной эллиптической геометрии. Такая геометрия вполне естественна для поверхности Земли. Она достаточно «удобна в обращении» и по крайней мере ничуть не уступает той, которая возникает при рассмотрении сферы как двумерной поверхности в трехмерной евклидовой геометрии.

Идеи Гаусса были хорошо знакомы Риману. Гаусс предложил Риману несколько тем для публичной лекции, с которой тому предстояло выступить для получения звания приват-доцента, дававшего право на преподавание в Гёттингенском университете. Риман остановил свой выбор на основаниях геометрии и в 1854 г. в присутствии Гаусса прочел свою лекцию на философском факультете. Лекция Римана была опубликована в 1868 г. под названием «О гипотезах, лежащих в основании геометрии».

Проведенное Риманом исследование геометрии физического пространства потребовало пересмотра всей проблемы, касающейся структуры пространства. Риман первым поставил вопрос: что же нам достоверно известно о физическом пространстве? Какие условия, или факты, заложены в самом понятии пространства еще до того, как мы, опираясь на опыт, выделяем конкретные аксиомы, которые выполняются в физическом пространстве? Из этих исходных условий, или фактов, Риман намеревался вывести остальные свойства пространства. Такие аксиомы и логические следствия из них и необходимо априори признать истинными. Любые другие свойства пространства надлежало изучать эмпирически. Одна из целей Римана состояла в доказательстве того, что аксиомы Евклида являются эмпирическими, а отнюдь не самоочевидными истинами. Риман избрал аналитический подход (опирающийся на алгебру и анализ), поскольку геометрические доказательства не свободны от влияния нашего чувственного опыта и в них возможны допущения, не входящие явно в число посылок.

Поиск априорного (предшествующего нашему знанию) пространства привел Римана к исследованию локального поведения пространства, ибо свойства последнего могут изменяться от точки к точке. Такой подход получил название дифференциальной геометрии в отличие от геометрии пространства в целом, которой занимался Евклид, а в неевклидовой геометрии — Гаусс, Бойаи и Лобачевский.

Следуя локальному подходу к геометрии, Риман столкнулся с необходимостью определить расстояния между двумя типичными, или характерными, точками, координаты которых отличаются на бесконечно малые величины. Расстояние между такими бесконечно близкими точками Риман обозначил ds. Он предположил, что квадрат этого расстояния в трехмерном пространстве (в действительности Риман рассматривал общий случай n-мерного пространства) можно представить в виде

ds2 = g11dx12 + g12dx1dx2 + g13dx1dx3 + g21dx1dx2 + g22dx22 + g23dx2dx3 + g31dx1dx3 + g32dx2dx3 + g33dx32,

где gij функции координат x1, x2 и x3; gij = gji и правая часть положительна при всех значениях gij. Выражение для ds представляет собой обобщение формулы Евклида

ds2 = dx12 + dx22 + dx32,

которую в свою очередь можно рассматривать как один из вариантов теоремы Пифагора. Допуская зависимость коэффициентов gij от координат, Риман тем самым учитывал, что природа пространства может изменяться от точки к точке. Из формулы для ds2 стандартными методами математического анализа можно извлечь множество фактов о длинах, площадях, объемах и других характеристиках геометрических фигур и тел.

В той же лекции Риман сделал немало важных замечаний. В частности, он сказал: «Остается еще выяснить, обеспечиваются ли опытной проверкой эти простые соотношения [которыми определяется метрика пространства] и если обеспечиваются, то в какой степени и в каком объеме?» ([23], с. 322). Свойства физического пространства по Риману надлежало определять только опытным путем. Например, он считал, что аксиомы евклидовой геометрии лишь приближенно истинны применительно к физическому пространству. Свою лекцию Риман закончил следующими пророческими словами:

Или то реальное, что создает идею пространства, образует дискретное многообразие, или же нужно пытаться объяснить возникновение метрических отношений чем-то внешним — силами связи, действующими на это реальное… Здесь мы стоим на пороге области, принадлежащей другой науке — физике, и переступать его нам не дает повода сегодняшний день.

([23], с. 324.)

Здесь Риман высказал предположение, что природа физического пространства должна каким-то образом отражать происходящие в нем физические явления. Риман, несомненно, развил бы эту глубокую идею, если бы не его преждевременная кончина (он умер в возрасте сорока лет).

Идею Римана удалось несколько развить математику Уильяму Кингдону Клиффорду (1854-1879). По мнению Клиффорда, некоторые физические явления обусловлены изменениями кривизны пространства.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату