Что же такое математика: россыпь алмазов, скрытых в недрах реального мира и постепенно извлекаемых оттуда, или груда искусственных камней, созданных людьми, столь блестящих, что они своим блеском ослепили иных математиков, которые и без того переполнены гордостью за свои творения?
Другой, восходящей к Аристотелю точки зрения, согласно которой математика всецело является продуктом человеческой мысли, придерживается школа математиков, получивших название интуиционистов. В то время как одни утверждают, что истину гарантирует человеческий разум, другие полагают, что математика — создание склонного к заблуждениям человеческого разума, а не законченный свод знаний.
Герман Ганкель, Рихард Дедекинд и Карл Вейерштрасс считали математику творением человека. В письме к Веберу Дедекинд так говорил о «рукотворности» математики: «По-моему, то, что мы понимаем под числом, само по себе есть не класс, а нечто новое…, созданное нашим разумом. Мы божественная раса и обладаем… способностью творить» ([13], с. 374). Вейерштрасс вторит ему: «Истинный математик всегда поэт» ([13], с. 374). Ученик Рассела, известный философ Людвиг Витгенштейн также считал, что математик — изобретатель, а не открыватель. Эти и многие другие мыслители рассматривали математику как нечто не связанное с эмпирическими открытиями или рациональной дедукцией. Их позиция не лишена оснований: ведь даже такие элементарные понятия, как иррациональные и отрицательные числа, не являются ни дедуктивными следствиями из эмпирически установленных фактов, ни объективными сущностями внешнего мира.
Тех, кто склонен видеть в математике творение человеческого разума, по существу можно отнести к кантианцам, ибо Иммануил Кант видел источник математики в организующей силе человеческого разума. Однако современные философы утверждают, что математика имеет своим истоком не морфологию или физиологию разума, а его активность. Именно активность разума с ее эволюционирующими методами несет в себе организующее начало. Творческая активность разума постоянно рождает новые, высшие формы мысли. На примере математики можно ясно видеть, что человеческий разум не ограничен в своей способности созидать некий объем знания, который он сам считает интересным или полезным. Область такого созидания не замкнута. Творческая активность способна создать понятия, применимые как к существующим, так и к вновь возникающим областям мысли. Человеческий разум наделен способностью изобретать конструкции, включающие в себя результаты опыта, и упорядочивать их. Источник математики — в непрерывном развитии самого разума.
Ныне возникает немало разногласий по поводу природы самой математики и утрате ею своего исключительного положения как общепризнанной бесспорной области знания, и это свидетельствует о том, что математика — творение человеческого разума. Как сказал Эйнштейн, «всякий, кто осмеливается взять на себя роль судьи во всем, что касается Истины и Знания, терпит крушение под смех богов» ([13], с. 375).
Математики «оставили бога», поэтому им не оставалось ничего другого, как обратиться к человеку, что они и сделали. Они продолжали развивать свою науку и искать законы природы, прекрасно понимая, что их открытия отнюдь не замысел божий, а творения человека. Успехи, достигнутые математиками в прошлом, помогли им обрести уверенность в собственной правоте, и, к счастью, немало новых успехов увенчало их усилия. Жизнь математики была спасена благодаря чудодейственному лекарству, также приготовленному людьми: великолепным достижениям в небесной механике, акустике, гидродинамике, оптике, теории электромагнетизма, технике и фантастической точности предсказаний, основанных на математических теориях.
В своей «Загадочной Вселенной» (1930) Джеймс Джинс как бы подводит итог этому развитию математики:
Наши далекие предки пытались интерпретировать природу с помощью ими же созданных антропоморфных понятий и потерпели неудачу. Столь же безуспешными оказались и усилия наших не столь отдаленных предшественников, пытавшихся рассматривать природу как своего рода механизм… Вместе с тем наши усилия познать природу, пользуясь понятиями чистой математики, до сих пор были необычайно успешными. Ныне представляется бесспорным, что природа теснее связана с понятиями чистой математики, чем с понятиями биологии и техники.
Далее Джинс, подчеркивая близкое родство между человеком и физическим миром, замечает: «Во всяком случае, не подлежит сомнению, что природа и наши сознательные математические умы действуют по одним и тем же законам» ([13], с. 398). И далее осторожно добавляет: «Вселенную лучше всего изображать (хотя и этот образ далек от совершенства и неадекватен) как чистую мысль, принадлежащую кому-то, кого за неимением более подходящего слова мы назовем математическим мыслителем». Тем, кто все еще сетует на то, что физические науки достигают успеха ценой математической абстракции, следовало бы поразмыслить и попытаться понять, какие откровения они ожидали найти в самом полном научном изложении природы физического мира.
Независимо от того, что могут поведать о существовании и нашем знании физического мира новейшие философские учения, одно не вызывает сомнений. Современная физика отказалась от механических моделей или даже наглядных картин физической реальности; она все большее значение придает математическому описанию и даже всецело полагается на него. Эта тенденция, насколько можно судить, сохранится и впредь. Возврат к прошлому вряд ли возможен. Новейшие области физики столь далеки от повседневного опыта, от чувственного восприятия, что постичь их по силам только математике.
По словам Джинса, «создание моделей или картин для объяснения математических формул и описываемых ими явлений — шаг не к реальности, а от нее; поступать так все равно, что взять идолов, изображающих бесплотные духи».
Платон в свое время использовал образ пещеры, на стене которой человек видит только тени людей и событий; так и мы, живущие в физическом мире, наблюдаем только тени многих физических явлений, и эти «тени» — математические. Может не быть духов, ведьм или чертей, но физические явления, столь же не доступные нашему восприятию, как и любые другие творения человеческого воображения, заведомо существуют.
Тенденция к толкованию математических закономерностей как самой реальности отчетливо прослеживается в работах многих авторов. Дж. У.Н. Салливен в книге «Ограничения науки» (1933) утверждает, что только количественные аспекты материальных явлений имеют отношение к реальному миру. В частности, современное естествознание не требует понимания природы исследуемых сущностей, оно довольствуется знанием их математической структуры. Джинс в своей «Загадочной Вселенной» назвал Вселенную гигантской мыслью. Разум перестал быть незваным гостем в материальном мире, отныне он — его создатель.
Имея в виду не Вселенную в целом, а лишь круг явлений, изучением которых занимается квантовая механика, физик и философ Генри Маргенау утверждает, что волновые функции Шрёдингера есть подлинная реальность.
Но, быть может, лучше всех позицию большинства современных ученых выразил Эйнштейн в книге «Мир, каким я вижу его» (1934):
Весь предшествующий опыт убеждает нас в том, что природа представляет собой реализацию простейших математически мыслимых элементов. Я убежден, что посредством чисто математических конструкций мы можем найти те понятия и закономерные связи между ними, которые дадут нам ключ к пониманию явлений природы. Опыт может подсказать нам соответствующие математические понятия, но они ни в коем случае не могут быть выведены из него. Конечно, опыт остается единственным критерием пригодности математических конструкций физики. Но настоящее творческое начало присуще именно математике. Поэтому я считаю в известном смысле оправданной веру древних в то, что чистое мышление в состоянии постигнуть реальность.
Наделенные немногими и весьма ограниченными по своим возможностям органами чувств и головным мозгом, люди начали проникать в окружающий их загадочный мир. Используя собственный чувственный