откроется небольшое число натриевых пор; но, поскольку много калиевых пор уже открыто, изнутри может выйти достаточно калия, чтобы скомпенсировать этот эффект и быстро вернуть мембрану в исходное состояние покоя. Предположим, однако, что начальный перенос заряда столь велик и открылось так много натриевых пор, что натрий приносит внутрь больше заряда, чем может быть выведено с калием; тогда мембрана деполяризуется еще сильнее. Это приведет к открытию еще большего числа натриевых пор, к еще большей деполяризации и так далее — возникнет самоусиливающийся взрывоподобный процесс. Когда откроются все натриевые поры, которые могут открыться, мембранный потенциал изменит свой знак на обратный по отношению к потенциалу покоя: вместо 70 милливольт с положительным полюсом снаружи он составит 40 милливольт с отрицательным полюсом снаружи.

Уменьшение потенциала на мембране с последующим изменением его знака (реверсией) не происходит сразу по всей длине волокна, так как перенос заряда требует времени. Активный участок возникает в одном месте и перемещается по волокну со скоростью от 0,1 до примерно 10 метров в секунду. В любой момент времени существует один активный участок с реверсированным потенциалом, и эта область реверсии передвигается, удаляясь от тела нейрона; впереди нее находится участок с еще не открытыми каналами, а позади — участок, где каналы снова закрылись и временно неспособны к повторному открытию.

Это и есть процесс распространения импульса. Вы видите, что он вовсе не похож на прохождение тока по медной проволоке. По всей длине нерва не перемещаются электрические заряды, ионы или вообще нечто материальное, точно так же как при смыкании лезвий ножниц ничто не перемещается от соединительного винта до их кончиков. (Ионы образуют лишь местные токи, переходя внутрь и наружу, подобно тому как лезвия ножниц движутся вверх и вниз.) Перемещается некоторое событие или процесс — перекрещивание лезвий ножниц или импульс в нерве.

Поскольку подготовка натриевых каналов к следующему открытию и закрытию требует некоторого времени, наибольшая частота, с которой клетка или аксон способны генерировать импульсы, составляет около 800 в секунду. Однако столь высокая частота необычна; даже для сильно активированных нервных волокон характерны частоты 100–200 импульсов в секунду.

Рис. 11. Мембрана глиальной клетки многократно обернута вокруг аксона, как это видно на электронной микрофотографии поперечного среза нервного волокна. Такая мембрана состоит из миелина, который ускоряет проведение нервных импульсов, повышая сопротивление и уменьшая емкость между внутренностью аксона и окружающим пространством. В аксоне видны (в поперечном сечении) органеллы, называемые микротрубочками.

Важной особенностью нервного импульса является то, что он возникает по принципу всё или ничего. При достаточной начальной деполяризации — если она превышает некоторую пороговую величину — процесс становится самоусиливающимся и реверсия происходит всегда до 0,02 вольт (минус снаружи). Величина потенциала, распространяющегося по нерву (т.е. импульса), определяется самим нервом, а не степенью начальной деполяризации, которая привела к его возникновению. Здесь уместна аналогия с любым взрывообразным процессом. Скорость полета пули никак не связана с тем, насколько резко вы нажали на спусковой крючок.

Для многих функций мозга скорость проведения импульса представляется весьма важной, и нервная система выработала особый механизм ее повышения. Плазматическая мембрана глиальных клеток многократно обертывается вокруг аксона, образуя слоистую оболочку, значительно повышающую эффективную толщину нервной мембраны. Это утолщение снижает емкость мембраны, а тем самым и величину заряда, необходимую для ее деполяризации. Слоистое вещество, богатое жировым материалом, называется миелином. Через каждые несколько миллиметров оболочка прерывается в так называемых перехватах Ранвье, что позволяет токам, связанным с импульсом, входить в аксон или выходить из него. В результате нервный импульс фактически перескакивает от одного перехвата к следующему, а не передвигается непрерывно вдоль аксона, что намного ускоряет передачу нервных сигналов. Большинство крупных волокнистых пучков в мозгу миелинизировано, что придает им блестящий белый цвет на свежеприготовленных срезах. Белое вещество головного и спинного мозга состоит из миелинизированных аксонов, и в нем отсутствуют тела нервных клеток, дендриты и синапсы. Серое вещество состоит в основном из клеточных тел, дендритов, аксонных окончаний и синапсов, но может содержать и миелинизированные аксоны.

Основные пробелы в нашем понимании природы импульса, равно как и основные направления современных исследований в этой области, связаны со структурой и функцией белковых каналов.

Синаптическая передача

Как первоначально возникают импульсы, и что происходит на дальнем конце аксона, когда импульс прибывает туда?

Участок клеточной мембраны у окончания аксона, образующий первую половинку синапса (пресинаптическую мембрану), обладает удивительной специализированной структурой. Прежде всего, он содержит особые каналы, которые при деполяризации открываются и пропускают положительно заряженные ионы кальция. Поскольку концентрация кальция (как и натрия) снаружи выше, чем внутри клетки, открытие этих каналов позволяет кальцию переходить внутрь. Каким-то пока не известным образом это поступление кальция внутрь клетки приводит к выбрасыванию через мембрану наружу небольших порций особых веществ, называемых нейромедиаторами. Уже идентифицировано около двадцати химических медиаторов, и, судя по темпу новых открытий, их общее число может превышать полсотни. Молекулы медиаторов намного меньше белковых молекул, но обычно крупнее ионов натрия или кальция. Примерами нейромедиаторов могут служить ацетилхолин и норадреналин. Когда эти вещества высвобождаются из пресинаптической мембраны, они быстро диффундируют через синаптическую щель шириной 0,02 мкм к постсинаптической мембране.

Постсинаптическая мембрана тоже специализирована: в ней имеются белковые рецепторы, которые реагируют на нейромедиатор открытием соответствующих каналов, позволяя ионам одного или нескольких типов проходить через них. От того, какие именно ионы (натрий, калий, хлор) смогут проходить, зависит, будет ли сама постсинаптическая клетка деполяризована или же ее мембранный потенциал будет стабилизирован, т.е. ее деполяризация затруднена.

Подытожим сказанное. Нервный импульс приходит к окончанию аксона и вызывает здесь высвобождение специальных нейромедиаторных молекул. Эти нейромедиаторы воздействуют на постсинаптическую мембрану так, что либо понижают ее мембранный потенциал, либо предотвращают его понижение. При понижении мембранного потенциала частота импульсации возрастает; мы назовем такой синапс возбуждающим. Если же мембранный потенциал вместо этого стабилизируется на подпороговом уровне, импульсы не возникают или возникают с меньшей частотой, и тогда синапс называют то?рмозным.

Будет ли данный синапс возбуждающим или тормозным, зависит от того, какой в нем высвобождается медиатор и каковы здесь рецепторные молекулы. Ацетилхолин, самый известный медиатор, в некоторых синапсах оказывает возбуждающее действие, а в других — тормозное, он возбуждает мышцы конечностей и туловища, но тормозит сокращения сердца. Норадреналин обычно служит возбуждающим медиатором, гамма-аминомасляная кислота (ГАМК) — тормозящим. Насколько нам известно, характер действия каждого данного синапса остается постоянным на протяжении всей жизни животного.

С дендритами и телом нейрона могут контактировать десятки, сотни или тысячи аксонных окончаний; поэтому в любой момент одни входные синапсы стремятся деполяризовать клетку, а другие противодействуют этому. Импульс, приходящий к возбуждающему синапсу, будет деполяризовать постсинаптическую клетку; если одновременно придет также импульс к тормозному синапсу, эффекты обоих импульсов будут стремиться погасить друг друга. В любой момент уровень мембранного потенциала является

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×