количественная величина может изменяться сколь угодно быстро. Экономисты полагали, что цены меняются довольно плавно в том смысле, что проходят — быстро или медленно — через все уровни, лежащие на пути от одной точки к другой. Этот образ движения, заимствованный из физики, был ложным: цены могут совершать мгновенные скачки, сменяющие друг друга с той же быстротой, с какой мелькают новости на ленте телетайпа и брокеры просчитывают в уме выгоды от возможной сделки. Мандельбро утверждал, что стратегия фондовой биржи обречена на провал, если определенные акции надо продать за 50 долларов, пока цена бумаг снижается с 60 до 10 долларов.

Эффект Иосифа символизирует непрерывность. Наступят семь плодородных лет на земле египетской, и придут после них семь лет голода. Периодичность, если именно о ней идет речь в библейской легенде, понимается чересчур упрощенно, однако периоды наводнений и периоды засухи действительно настают вновь и вновь, чередуясь друг с другом. Хотя подобное кажется случайностью, но чем дольше та или иная определенная местность страдает от засухи, тем больше вероятность, что засушливые периоды повторятся. Более того, математический анализ колебаний уровня Нила выявил, что подобное постоянство наблюдалось как десятилетиями, так и веками.

Два явления — скачок и непрерывность — стремятся к противоположным результатам, но сводятся к одному: тенденции в природе вполне реальны, однако способны затухать так же быстро, как и проявляться.

Отсутствие последовательности, внезапные «вспышки» помех, множества Кантора — подобным явлениям не нашлось места в геометрии двух прошедших тысячелетий. Формами классической геометрии считаются прямые и плоскости, окружности и сферы, треугольники и конусы. Они воплощают могущественную абстракцию действительности, они вызвали к жизни непревзойденную философию гармонии Платона. Евклид построил на их основе геометрию, известную уже две тысячи лет, и по сей день большинство людей знакомы только с ней. Художники распознавали в таких формах идеалы красоты, астрономы составили из них Птолемееву картину мира, но для постижения истинной сложности наука нуждается в ином типе абстракции, нежели тот, что присущ классической геометрии.

Как любил повторять Мандельбро, облака далеки по форме своей от сфер, горы совсем не конусы, а молния отнюдь не придерживается в своем движении прямой линии. Новая геометрия подобна зеркалу, отражающему вовсе не плавные и мягкие очертания привычной Вселенной, а неровный и шершавый контур иного мира. Зарождающуюся науку можно назвать геометрией ям и впадин, фрагментов разбитого единства, изгибов, узлов, переплетений. Пониманию сложной природы живого мира недоставало одного лишь предположения о далеко не случайном характере сложности. Истинное проникновение в глубины хаоса требовало безоговорочной веры в то, что интереснейшей чертой, например, разряда молнии является не ее направление, а скорее расположение ее зигзагов. Исследования Мандельбро претендовали на новое видение действительности, указывая на то, что различные странные формы имеют особое значение. Впадины и сплетения стоят много больше, нежели классические формы Евклидовой геометрии, зачастую являясь ключом к постижению самой сущности явлений.

Что можно считать главным, скажем, в линии побережья? Мандельбро задал такой вопрос в статье «Какова длина береговой линии Великобритании?», ставшей поворотным пунктом в мышлении ученого.

С феноменом береговой линии он столкнулся, изучая малоизвестную работу английского ученого Льюиса Ф. Ричардсона, вышедшую после смерти автора. Последнему удалось отыскать множество поразительных вещей, ставших впоследствии элементами хаоса. Ричардсон еще в 1920-х годах размышлял о предсказании погоды. Он изучал турбулентность в жидкостях, бросая мешок с белыми цветами в воды канала Кейп-Код, и задавался вопросом «Имеет ли ветер скорость?» в одноименной статье 1926 г. («Спрашивать о таком, на первый взгляд, глупо, но осведомленность расширяет кругозор», — писал ученый позже.) Зачарованный извивами береговых линий и государственных границ, Ричардсон проштудировал энциклопедии Испании и Португалии, Бельгии и Нидерландов и обнаружил 20-процентное отклонение истинной протяженности их общих рубежей от длины, указываемой справочными изданиями.

Анализ, проделанный Мандельбро, ошеломлял. Посвященные в его результаты испытывали шок от этих умозаключений, не то до боли очевидных, не то до абсурда ложных. Как подметил ученый, на вопрос о длине береговых линий большинство людей дают один из двух стандартных ответов: «Не знаю. Это не по моей части» или «Даже не представляю. Посмотрю в энциклопедии».

Длина любой береговой линии, объяснял Мандельбро, в известном смысле, бесконечно велика. Если подходить с другой стороны, ответ, конечно же, будет зависеть от величины мерки. Рассмотрим один из возможных методов измерения. Топограф, вооружась циркулем, разводит его ножки на расстояние одного ярда и измеряет им линию побережья. Полученный результат будет приблизительным, поскольку циркуль «перешагивает» изгибы и повороты, длина которых меньше ярда. Если топограф разведет ножки не так широко, скажем на один фут, и повторит процедуру, конечный результат окажется больше предыдущего. Будет «схвачено» больше деталей. Чтобы покрыть расстояние, которое ранее измерялось одним шагом циркуля, потребуется уже более трех шагов длиной в один фут. Топограф записывает новый результат и, разведя ножки на четыре дюйма, начинает трудиться заново. Подобный мысленный эксперимент показывает, как можно получить различные результаты при изменении масштаба исследования. Наблюдатель, пытающийся измерить длину береговой линии Великобритании с космического спутника, получит менее точный результат, чем тот, кто не поленится обойти все бухты и пляжи. Последний же, в свою очередь, проиграет улитке, оползающей каждый камешек.

Хотя результат каждый раз будет возрастать, здравый смысл подсказывает, что он неуклонно стремится к некой конечной величине — истинной длине береговой линии. Иными словами, все измерения сойдутся в одной точке. Если бы линия побережья представляла собой одну из фигур Евклидовой геометрии, к примеру круг, применение вышеописанного метода сложения отрезков прямой линии, измеренных каждый раз с большей точностью, оказалось бы успешным. Однако Мандельбро обнаружил, что при бесконечном уменьшении меры измеряемая длина береговой линии неограниченно растет. В бухтах и на полуостровах обнаруживаются мелкие бухточки и мысики — и так вплоть до размеров крошечного атома. Лишь при достижении атомного уровня измерения подойдут к концу. Возможно…

Рис. 4.3. Фрактальный берег. Береговая линия генерирована компьютером. Детали ее не упорядочены. Однако фрактальное измерение постоянно, так что шершавости и неровности выглядят все теми же, независимо от степени увеличения.

Геометрия Евклида, оперирующая длинами, ширинами и высотами, не позволяла постичь сущность неправильных форм, и Мандельбро пришло в голову отталкиваться от идеи размерности, в которой ученые усматривают гораздо больше, чем обыватели. Напомню, что мы живем в трехмерном пространстве: чтобы определить положение точки, надо задать три координаты, например долготу, широту и высоту. Оси трехмерного пространства представляют собой три взаимно перпендикулярные линии, пересекающиеся в начале координат. Это все еще территория Евклидовой геометрии, где пространство характеризуется тремя измерениями, плоскость — двумя, прямая — одним, а точка имеет нулевую размерность.

Абстрактная процедура, позволившая Евклиду постичь одномерные и двухмерные объекты, может быть с легкостью применена и к явлениям повседневной жизни. Так, из чисто практических соображений карта дорог являет собой двухмерный объект — фрагмент плоскости, в котором для адекватного отражения изображаемого задействованы два измерения. Безусловно, реальные дороги трехмерны, как и все остальное, однако их высота столь трудноуловима (и в общем-то не существенна для их эксплуатации), что ее можно не учитывать. Заметим, что карта дорог остается двухмерной даже тогда, когда ее сворачивают. Так и нить всегда имеет лишь одно измерение, а частица или точка не имеют его вовсе.

А сколько измерений у клубка бечевки? По мнению Мандельбро, ответ на этот вопрос зависит от уровня восприятия. С огромного расстояния клубочек представляется не более чем точкой с нулевой размерностью. Приближаясь, можно заметить, что он подобен сфере и, таким образом, характеризуется уже тремя измерениями. На еще более близком расстоянии становится различимой сама бечевка, а объект приобретает одно измерение, скрученное таким образом, что задействуется трехмерное пространство. Вопрос о числе цифр, определяющих положение точки, остается актуальным: пока мы вдалеке, нам не

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату