Рис. 4.5. Конструкция с отверстиями. Лишь некоторые математики в начале XX века проникли в сущность объектов, созданных с помощью техники добавления или удаления бесконечного множества составляющих их частей. Внешний вид подобных конструкций казался зачастую просто чудовищным. Одной из таких фигур является ковер Серпински. Для его построения удаляют одну девятую часть из центра квадрата, затем вырезают девятые части из центров оставшихся, менее крупных восьми квадратов и т. д. Аналогом ковра в трехмерном пространстве считается губка Менгера, весьма внушительная решетка, имеющая бесконечную площадь поверхности и нулевой объем.
Продолжая следовать этим путем, Мандельбро, по сравнению с другими математиками, пользовался двумя преимуществами. Во-первых, он имел доступ к вычислительной технике корпорации IBM, что помогло ему решить задачу, идеально подходящую для высокоскоростного компьютера. Подобно тому как метеорологам приходится проделывать одни и те же подсчеты для миллионов соседствующих друг с другом точек атмосферы, Мандельбро должен был вновь и вновь выполнять несложное преобразование. Компьютер мог справиться с этим без особого труда, демонстрируя порой весьма неожиданные результаты. Математики в начале XX века быстро споткнулись на сложных вычислениях, так же и для первых биологов стало серьезным препятствием отсутствие микроскопа. Воображение способно рисовать тончайшие детали, но лишь до определенной черты.
Как отмечал Мандельбро, «целое столетие для математики прошло впустую, поскольку рисование не играло тогда в науке никакой роли. Рука, карандаш и линейка исчерпали себя. Будучи слишком привычными и понятными, эти средства никогда не выдвигались на передний план, а компьютера еще не существовало. Вступив в игру, я ощутил, что в ней не задействуется интуиция — разве что случайно. Интуиция, взлелеянная традиционным воспитанием, вооруженная рукой, карандашом и линейкой, посчитала новые формы весьма уродливыми и далекими от общепринятых стандартов, вводя нас в заблуждение. Первые полученные изображения весьма удивили меня, но позже во вновь конструируемых картинах проглядывали фрагменты предыдущих, и так продолжалось довольно долго. Отмечу, что интуиция не дается нам изначально. Я приучал свою интуицию воспринимать как должное те формы, которые считались абсурдными и отвергались с самого начала. И я понял, что любой может поступить точно так же».
Другим преимуществом Мандельбро стала картина реальности, которую он начал выстраивать, столкнувшись с флуктуациями цен на хлопок, шумов при передаче сигналов, разливов рек. Картина эта начала приобретать отчетливость. Исследование образцов неупорядоченности в естественных процессах и анализ бесконечно сложных форм пересекались, и точкой пересечения послужило так называемое
Внутреннее подобие представляет собой симметрию, проходящую сквозь масштабы, повторение большого в малом. Таблицы Мандельбро, отражавшие изменения во времени цен и уровня рек, обнаруживали подобие, поскольку не только воспроизводили одну и ту же деталь во все более малых масштабах, но и генерировали ее с определенными постоянными измерениями. Чудовищные формы вроде кривой Коха являлись внутренне подобными потому, что выглядели все теми же даже при большом увеличении. Подобие «встроено» в саму технику создания кривых: одно и то же преобразование повторяется при уменьшающемся масштабе. Подобие легко распознается, ведь его образы витают всюду: в бесконечно глубоком отражении фигуры человека, стоящего между двумя зеркалами, или в мультфильме о том, как рыбина заглотила рыбу, которая слопала рыбку, съевшую совсем маленькую рыбешку. Мандельбро любил цитировать Джонатана Свифта: «Итак, натуралисты наблюдают, как на блоху охотятся маленькие блошки, а их, в свою очередь, кусают еще более мелкие блошки, и так далее до бесконечности».
На северо-западе США землетрясения лучше всего изучать в геофизической лаборатории Ламонт- Догерти, которая размещена в нескольких ничем не примечательных зданиях, затерянных среди лесов на юге штата Нью-Йорк, к западу от реки Гудзон. Именно там Кристофер Шольц, профессор Колумбийского университета, специализировавшийся на изучении формы и строения твердого вещества Земли, впервые задумался о таком явлении, как фракталы.
Математики и физики-теоретики с пренебрежением отнеслись к трудам Мандельбро. Шольц, однако, принадлежал как раз к тому типу прагматиков, ученых практического склада, которые приветствовали появление фрактальной геометрии. Имя Мандельбро он впервые услышал в 60-х годах, когда первооткрыватель фракталов еще занимался экономикой, а сам Шольц заканчивал обучение в Массачусетском технологическом институте и ломал голову над проблемой землетрясений. Еще за два десятка лет до того было выявлено, что распределение землетрясений большой и малой силы подчиняется особой математической модели, подобной той, что отражает распределение доходов в экономике свободного рынка. Это наблюдение одинаково подходило для любого района земного шара, где бы ни подсчитывали число толчков и ни измеряли их силу. Принимая во внимание, сколь беспорядочны, непредсказуемы были сотрясения земной коры во всех других отношениях, имело смысл доискаться, какие именно физические процессы обуславливают подобную регулярность. По крайней мере, так думал Шольц. Многие другие сейсмологи довольствовались констатацией факта землетрясений.
Шольц не забыл имени Мандельбро, и когда в 1978 г. на глаза ему попалась богато иллюстрированная и напичканная уравнениями книга «Фракталы: форма, случайность и размерность», он купил этот труд — собрание весьма причудливых мыслей. Казалось, Мандельбро свалил туда в беспорядке все свои знания и гипотезы о Вселенной. За несколько лет эта работа и ее второе, расширенное и дополненное издание «Фрактальная геометрия природы» разошлись тиражом, какого не имела ни одна другая работа по высшей математике. Стиль изложения был темен и рождал досаду, хотя местами остроумие разбавляло сухую непроницаемость авторской манеры. Мандельбро называл свои писания «манифестом и настольной книгой».
Один из немногих упрямцев, среди которых большинство составляли естественники, Шольц несколько лет размышлял над тем, какую пользу можно извлечь из книги. По выражению Шольца, «Фракталы» были «не практическим руководством, а книгой восторгов». Он, впрочем, интересовался поверхностями, а о них рассказывалось буквально на каждой странице. Так и не сумев выкинуть из головы открытия Мандельбро, Шольц попытался применить фракталы к описанию, классификации и измерению геофизических объектов.
Вскоре Шольц понял, что не одинок, хотя до созыва многолюдных конференций и семинаров было еще далеко. Идеи фрактальной геометрии объединили ученых, озадаченных собственными наблюдениями и не знавшими, как их интерпретировать. Откровения фрактальной геометрии указали путь специалистам, исследовавшим слияние и распад всевозможных объектов. Ее методы как нельзя лучше подходили для изучения материалов: шероховатых поверхностей металлов, крошечных отверстий и канавок в ноздреватом старом камне, фрагментированных пейзажей зоны землетрясения.
Как представлял себе Шольц, в компетенцию геофизиков входило описание поверхности Земли — поверхности, чье соприкосновение с океанами формирует береговую линию. Твердая земная кора включает в себя зоны разрывов и расселин. Сдвигов, изломов и трещин на каменном лике Земли такое количество, что именно они дают ключ к тайнам планеты. Для постижения этих тайн они значат больше, чем слагающие земную кору горные породы. Расселины пересекают поверхностный слой нашей планеты в трех измерениях, образуя то, что Шольц назвал «распадающейся оболочкой». Эта оболочка регулирует циркуляцию в земной коре воды, нефти, природного газа. Она влияет на землетрясения. Постижение свойств поверхностей представляло собой задачу первостепенной важности, но Шольц полагал, что его наука зашла в тупик. Откровенно говоря, не от чего было даже оттолкнуться.
Геофизики рассматривали поверхности как рельефы — чередование выпуклостей, впадин и плоских участков. Взглянув, например, на силуэт автомашины «фольксваген»-жук, мы описали бы форму ее поверхности кривой. Эту кривую можно измерить традиционными методами Евклидовой геометрии, ее можно описать уравнением. Однако Шольц был убежден, что при таком подходе мы словно бы рассматривали поверхность в узком спектральном диапазоне, доступном нашему зрению. Это все равно что