открытием? Или это лишь заявка? Математики и прежде задавались подобными вопросами, однако споры приобрели особый накал, когда появились компьютеры с их большими возможностями. Ученые, использующие вычислительные машины для постановки опытов, из теоретиков превратились в экспериментаторов, играющих по новым правилам. Они стали делать открытия, не утруждая себя доказательством теоремы — основы всякой математической статьи.
Спектр вопросов, затрагиваемых в книге Мандельбро, отличался поразительной широтой. В ней детально раскрывалась история математики. Куда бы ни заводил его хаос, Мандельбро везде находил основание называть себя первооткрывателем. Не важно, что большинство читателей считали его соображения весьма туманными, а порою даже бесполезными; им приходилось признавать, что его неординарная интуиция дает толчок развитию тех областей, которые он никогда серьезно не изучал, — начиная от сейсмологии и заканчивая физиологией. Иногда подобное казалось трюкачеством, раздражало, и даже почитатели ученого порой ворчали: «Мандельбро не посягает на толковые идеи, пока их не выскажут!»
Вряд ли это имеет значение, ведь физиономия гения совсем не должна нести на себе отсвет святости, как лицо Эйнштейна. Как-никак Мандельбро десятилетиями должен был поступаться собственными идеями. Ему приходилось излагать свои мысли таким образом, чтобы они никого не задевали. Он вымарывал фантастически звучащие предисловия, лишь бы статью напечатали. После выхода первого издания его книги, переведенной в 1975 г. на французский язык, ученый чувствовал, что его просто заставляют вести себя так, будто в ней не раскрывалось ничего пугающего и нового. Как раз поэтому он открыто назвал второе издание «манифестом и настольной книгой». Это был вызов политике академической среды.
«Политика в известном смысле повлияла на самый стиль моего творчества, о чем я в дальнейшем очень сожалел. Я использовал выражения типа „Естественно…“, „Весьма интересным наблюдением является то, что…“. На самом деле было все что угодно, кроме естественного. Все эти интересные наблюдения являли собой результат долгих и сложных исследований, поиска доказательств и боязни ошибиться. Я взял философский и несколько отстраненный тон, поскольку хотел быть принятым. Рискни я заикнуться, что предлагаю радикальный подход, читатели тут же потеряли бы всякий интерес. Позже я вернулся к своим утверждениям, формулируя их несколько иначе: „Интересно заметить, что…“ Но это было уже совсем не то, чего я ожидал».
Обращаясь к прошлому, Мандельбро с грустью вспоминал, что реакция ученых на его исследования была весьма предсказуемой. Первый вопрос всегда звучал так: «Кто вы и почему интересуетесь нашей дисциплиной?» Далее следовало: «Как рассказанное вами относится к тому, что делаем мы? Почему вы не объясняете свои теории на основе уже известных нам фактов?» И наконец: «Вы уверены, что используете стандартную математику?» (Да, более чем уверен!) «А почему же тогда мы ничего о ней не знаем?» (По причине того, что она, будучи стандартной, весьма малопонятна.)
В этом отношении математика отличается от физики и иных прикладных наук. Раздел физики, однажды устарев и став малопродуктивным, обычно навсегда уходит в прошлое. Подобное может показаться странным и послужит, возможно, источником вдохновения для физика наших дней, однако исчерпавшая себя тема, как правило, «умирает» в силу весьма веских причин. Математика же, напротив, полна тропинок и окольных путей, которые, казалось бы, ведут в никуда, но в будущем становятся магистралью новой науки. Потенции абстрактной идеи невозможно предсказать. Поэтому математики оценивают чистую истину с эстетической точки зрения, пытаясь, по примеру художников, найти в ней некую красоту, изящество. Так и Мандельбро, с его любовью к древностям, извлек из небытия довольно многообещающую область математики, которую грозила погрести под собой пыль веков.
В самую последнюю очередь собеседники Мандельбро осведомлялись: «Какого мнения математики о вашей работе?» (Им все равно, поскольку она не обогащает математику. По правде говоря, они удивлены тем, что их идеи находят свое отражение в природе.)
В конце концов термином «фрактал» стали обозначать метод описания, вычисления и рассмотрения множества неупорядоченных и фрагментарных, зазубренных и разъединенных объектов — начиная от кристаллообразных кривых-снежинок и заканчивая прерывистой цепью галактик. Фрактальная кривая воплощает собой организующую структуру, скрытую в невероятной сложности таких форм. Студенты в состоянии понять фракталы и даже «поиграть» с ними — ведь фракталы первичны настолько же, насколько и формы Евклида. Простейшими программами для создания фрактальных изображений заинтересовались фанаты персональных компьютеров.
С наибольшим энтузиазмом идеи Мандельбро восприняли люди, которые занимались прикладной наукой, изучали нефть, горные породы или металлы, а особенно специалисты исследовательских центров корпораций. Например, к середине 80-х годов довольно много народу в огромном научном подразделении корпорации «Эксон» трудилась над проблемами фракталов. В компании «Дженерал электрик» фракталы были приняты на вооружение в качестве основного инструмента для изучения полимеров, а также для сугубо секретных изысканий в сфере безопасности ядерных реакторов. В Голливуде им нашли, пожалуй, самое эксцентричное применение: с помощью фракталов создавали невероятно реалистичные пейзажи, земные и инопланетные. Они помогали создавать спецэффекты в кинофильмах.
Модели, открытые в начале 70-х годов Робертом Мэем, Джеймсом Йорком и другими учеными, объекты, в которых весьма сложно отделить упорядоченное от хаотичного, содержали в себе неожиданную регулярность. Эта последняя могла быть описана лишь на языке соотносимости больших и малых масштабов. Структуры, отворившие дверь в нелинейную динамику, оказались фрактальными. Новая геометрия вложила оригинальный инструментарий в руки практиков: физиков, химиков, сейсмологов, металлургов, физиологов и даже специалистов в области теории вероятности. Все они свято уверовали, что геометрия Мандельбро воплощает в себе измерения самой природы, в чем пытались убедить и других.
Принявшие на вооружение новую науку нанесли весьма ощутимый удар как по общепринятой математике, так и по традиционной физике. Однако сам Мандельбро так никогда и не снискал искреннего уважения представителей указанных дисциплин, которым, впрочем, все равно пришлось признать его успех. Один математик рассказывал друзьям, как проснулся ночью в холодном поту, дрожа всем телом. Ему привиделся жуткий кошмар: математика умерла и голос с небес — голос Бога, вне всякого сомнения, — прогремел: «Знаешь, в этом Мандельбро действительно
Мысль о внутреннем подобии, о том, что великое может быть вложено в малое, издавна ласкает человеческую душу — особенно души западных философов. По представлениям Лейбница, капля воды содержит в себе весь блистающий разноцветьем мир, где искрятся водяные брызги и живут другие неизведанные вселенные. «Увидеть мир в песчинке» — призывал Блейк, и некоторые ученые пытались следовать его завету. Первые исследователи семенной жидкости склонны были видеть в каждом сперматозоиде своего рода гомункулуса, т. е. крошечного, но уже полностью сформировавшегося человечка.
Однако как научный принцип внутреннее подобие выглядело весьма бледно по довольно простой причине: оно расходилось с реальными фактами. Сперматозоиды вовсе не являются уменьшенной копией человека, будучи гораздо более интересными, а процесс онтогенеза несравненно сложнее тривиального увеличения. Первоначальное значение внутреннего подобия как организующего начала происходило из ограниченных знаний человека о масштабах. Как представить чересчур огромное и слишком крошечное, стремительное и замедленное, если не распространить на него уже известное?
Подобные представления бытовали до тех пор, пока человек не вооружился телескопами и микроскопами. Сделав первые открытия, ученые поняли, что каждое изменение масштаба обнаруживает новые феномены и новые виды поведения. Современные специалисты в области физики частиц даже не видели этому конца: каждый новый, более мощный ускоритель расширял поле зрения исследователей, делая доступными все более крошечные частицы и более краткие временные промежутки.
На первый взгляд, идея постоянства при изменяющихся масштабах малопродуктивна, отчасти потому, что один из основных научных методов предписывает разбирать предмет исследования на составляющие и изучать мельчайшие частицы. Специалисты, разъединяя объекты, рассматривают порознь их элементы в каждый момент времени. Намереваясь изучить взаимодействие субатомных частиц, они исследуют две или