три сразу, что, казалось бы, уже довольно сложно. Однако внутреннее подобие проявляется на гораздо более высоких уровнях сложного, и именно поэтому стоит уделить внимание целому.
Надо отметить, что Мандельбро весьма умело воспользовался своей геометрией. Возвращение в науку идей масштаба в 60-70-х годах стало интеллектуальным течением, показавшим себя одновременно во многих областях. Намек на внутреннее подобие содержался в работе Лоренца 1963 г.: ученый интуитивно улавливал его в изяществе графиков, отображавших системы уравнений. Лоренц ощущал присутствие некой структуры, но видеть ее не мог из-за несовершенства компьютера. «Определение масштабов» стало движением в физической науке, которое вело — пожалуй, даже более целенаправленно, нежели исследования Мандельбро, — к дисциплине, известной под названием «хаос». Даже в весьма отдаленных сферах ученые начинали думать на языке теорий, использовавших иерархии масштабов. Так, например, произошло в эволюционной биологии, развитие которой подводило к убеждению, что целостная теория должна описывать феномен развития сразу и в генах, и в единичных организмах, и в видах и родах.
Можно, пожалуй, назвать парадоксом то, что инструмент масштабирования оценили по достоинству благодаря появлению в арсенале исследователей технических средств, сделавших более совершенным взгляд на мир. Именно по этой причине ушли в небытие ранние идеи о внутреннем подобии. Непостижимым образом к исходу XX века необычайно маленькие и невообразимо большие явления стали вполне обыденными, появились снимки огромных галактик и мельчайших атомов, отпала нужда по примеру Лейбница мысленно представлять части Вселенной, видимые только в микроскоп или телескоп. Приборы сделали подобные изображения частью жизни. Переход к новым способам сравнения большого и малого превратился в неизбежность. Некоторые из них даже обнаруживали продуктивность — при условии, что исследователь готов был продолжать поиски аналогов в уже имеющихся знаниях.
Нередко ученые, чье внимание привлекла фрактальная геометрия, ощущали некое эмоциональное сходство между новой математической эстетикой и веяниями в искусстве второй половины XX века, свободно черпая из культуры львиную долю энтузиазма, весьма полезного в исследованиях. Для Мандельбро миниатюрным воплощением Евклидовой точности вне пределов математики стала архитектура. Столь же успешно ее мог бы олицетворять стиль живописи, лучшим образцом которого являются цветные квадраты Джозефа Альберса: скромные, аккуратно-линейные, редукционистско-геометрические.
Геометрической форме присущ
Восхищаться гармоничной архитектурой — одно, а поражаться буйной дикости природы — совсем другое. Говоря на языке эстетики, фрактальная геометрия привнесла в науку по-современному острое и тонкое восприятие неприрученной, дикой природы. Когда-то влажные тропические леса, пустыни, поросшие кустарником бесплодные пустоши воплощали собой целину, которую должно покорить общество. Желая насладиться цветением и ростом, люди любовались садами. Как писал Джон Фаулс, имея в виду Англию XVIII века, «эпоха неуправляемой и первобытной природы кажется весьма тяжелым временем и навевает мысли об агрессивной необузданности, отталкивающей и неумолимо напоминающей о грехопадении, изгнании человека из Эдема… И даже естественные науки остались, в сущности, враждебными дикой природе, рассматривая ее как нечто такое, что должно приручить, классифицировать, использовать и эксплуатировать». Но к концу XX века культура стала иной, а вместе с ней изменилась и наука.
Итак, наука все же нашла применение малопонятным и причудливым формам вроде последовательности Кантора и кривой Коха. Первоначально они проходили в качестве доказательств в бракоразводном процессе между математикой и физикой на рубеже XIX–XX веков. Конец этого альянса широко обсуждался в академической среде начиная со времен Ньютона. Математики, подобные Кантору и Коху, восхищались собственной самобытностью, они вообразили, что могут перехитрить природу, но на самом деле им не удалось даже близко сравняться с ней. Всеми почитаемое магистральное направление физики также отклонилось в сторону от повседневного опыта. Лишь позже, когда Стив Смэйл вновь вернул математику к изучению динамических систем, физик мог уверенно заявить: «Мы должны принести благодарность астрономам и математикам за то, что они передали нам, физикам, поле деятельности в гораздо лучшем состоянии, чем то, в котором мы оставили его семьдесят лет назад».
Невзирая на достижения Смэйла и Мандельбро, именно физики в конце концов создали новую науку о хаосе. Мандельбро подарил ей особый язык и множество удивительных изображений природы. Как он сам признавался, его теории
Глава 5
Странные аттракторы
В больших круговоротах — малые,
Рождающие скорость,
А в малых — меньшие и меньшие,
Рождающие вязкость.
Проблема турбулентности имеет богатую историю. Все великие физики ломали над ней голову. Плавный поток разбивается на завитки и вихревые токи; беспорядочные изгибы разрушают границы между жидкостью и твердой поверхностью; энергия из крупномасштабного движения быстро перетекает в мелкие завихрения. Почему? Пожалуй, самые разумные идеи предлагали математики, большинство же физиков попросту опасались изучать турбулентность, которая казалась почти непостижимой. Доказательством тому может служить история о Вернере Гейзенберге, известном ученом, занимавшемся квантовой физикой. Последний признался на смертном одре, что хотел бы задать Господу Богу два вопроса — об основах