«подкове» и хаотическом потенциале динамических систем. Он размышлял о турбулентности в жидкостях и классической схеме Ландау, подозревая, что все это каким-то образом соотносится, но в то же время и противоречит друг другу.
Ученый раньше никогда не работал с потоками жидкости, но это совсем не отбило охоту к исследованиям, так же как и не обескураживало его менее удачливых предшественников. «Новое открывают, как правило, непрофессионалы, — говорил он. — На самом деле не существует сложной и глубокой теории турбулентности. Все, что мы можем выяснить о ней, имеет более общую природу, а посему доступно и людям, ранее этим не занимавшимся». Не составляло труда понять, почему турбулентность не поддавалась анализу, — поведение потоков жидкости описывали нелинейные дифференциальные уравнения, в большинстве своем нерешаемые. И все же Руэлль разработал весьма абстрактную альтернативу схеме Ландау, изложенную на языке Смэйла, где пространство использовалось как податливый материал, который можно сжать, вытянуть и согнуть, образовав формы типа «подковы». Работа была написана в Институте высших научных исследований, с перерывом на визиты к голландскому математику Флорису Такенсу, и опубликована совместно в 1971 г. В стиле статьи нельзя было ошибиться. Она являла собой чистую математику (заметьте, вышедшую из-под пера физика!) и содержала
И все же в заголовке публикации, которая называлась «О природе турбулентности», прослеживалась связь с реальным миром и чувствовалось нарочитое созвучие с названием знаменитой работы Ландау «К вопросу о турбулентности». Руэлль и Такенс явно желали уйти гораздо дальше математики, пытаясь предложить альтернативу традиционным взглядам на порог турбулентности. Они предположили, что источником всего сложного в турбулентности является не наложение частот, ведущих к появлению бесконечного множества независимых и перекрывающих друг друга движений жидкости, а всего лишь три отдельных движения. Кое-что в их логике казалось весьма смутным, заимствованным, да и попросту неверным, или тем, другим и третьим сразу — пятнадцать лет спустя мнения на сей счет еще расходились.
Тем не менее глубокая проницательность, комментарии, заметки на полях и вкрапления из физики сделали работу объектом внимания на долгие годы. Наиболее соблазнительным казался образ, окрещенный авторами
Странный аттрактор обитает в фазовом пространстве — одном из удивительнейших изобретений современной науки. Фазовое пространство делает возможным превращение чисел в изображения, извлекая даже малую толику существенной информации из движущихся систем, механических или жидкостных, и наглядно демонстрируя все их возможности. Физики уже имели дело с двумя более или менее простыми типами аттракторов — фиксированными точками и замкнутыми кривыми, описывающими поведение таких систем, которые достигли устойчивого состояния или непрерывно себя повторяют.
В фазовом пространстве все известные данные о динамической системе в каждый момент времени концентрируются в одной точке, которая и представляет собой данную систему в кратчайшем временном отрезке. В следующее мгновение система уже претерпит изменения, пусть даже совсем незначительные, и точка изменит свое местонахождение. Всю длительность существования системы можно изобразить на графике, следя за перемещениями точки с течением времени и наблюдая за ее орбитой в фазовом пространстве.
Но как же все данные о сложнейшей системе могут быть представлены лишь в одной точке? Если система характеризуется двумя переменными, найти ответ не составляет труда, он напрямую вытекает из Евклидовой геометрии, преподаваемой в средней школе: одна из переменных располагается на горизонтальной оси
Впрочем, столкнувшись с одним из проявлений реальности — трением, система начинает претерпевать изменения. Чтобы описать поведение маятника, подверженного трению, не нужны уравнения движения: каждое его колебание фактически заканчивается на одном и том же месте, в центре, откуда начиналось движение, и скорость его в эти моменты равна нулю. Данная центральная фиксированная зона как бы «притягивает» колебания. Вместо того чтобы вечно чертить на графике петли, орбита маятника спиралью закручивается внутрь. Трение рассеивает энергию системы, что в фазовом пространстве выглядит как толчок к центру. Наблюдается движение из внешних зон с высокой энергией к внутренним зонам с низкой энергией. Аттрактор — простейший из возможных — подобен магниту величиной с булавочную головку, встроенному в лист резины.
Одним из преимуществ рассмотрения состояний системы как совокупности точек в пространстве является то, что в таком случае легче наблюдать происходящие изменения. Система, в которой переменные непрерывно увеличиваются и уменьшаются, превращается в движущуюся точку, словно муха, летающая по комнате. Если некоторые комбинации переменных никогда не возникают, ученый может просто предположить, что пределы комнаты ограничены и насекомое никогда туда не залетит. При периодическом поведении изучаемой системы, когда она снова и снова возвращается к одному и тому же состоянию, траектория полета мушки образует петлю, и насекомое минует одну и ту же точку в пространстве множество раз. Своеобразные портреты физических систем в фазовом пространстве демонстрировали образцы движения, которые были недоступны наблюдению иным способом. Так фотография природного ландшафта в инфракрасных лучах открывает те мелочи и детали, которые существуют вне досягаемости нашего восприятия. Ученый, взглянув на фазовую картину, мог, призвав на помощь воображение, уяснить сущность самой системы: петля здесь соответствует периодичности там, конкретный изгиб воплощает определенное изменение, а пустота говорит о физической невероятности.
Даже при наличии двух переменных изображения в фазовом пространстве могли еще многим удивить. Даже на мониторах настольных компьютеров можно было построить кое-какие из них, превращая уравнения в красочные траектории. Некоторые физики начали создавать серии движущихся картинок и снимать видеопленки, чтобы продемонстрировать их своим коллегам. Математики из Калифорнии публиковали книги, иллюстрированные множеством красно-сине-зеленых рисунков в стиле анимации, — «комиксы хаоса», как отзывались о них, не без яда, коллеги авторов. Но пара измерений не охватывала всего богатства систем, которые хотели изучать физики, и ученые стремились ввести больше двух переменных, что, естественно, требовало увеличения числа измерений. Каждый фрагмент динамической системы, способный к независимому перемещению, является уже новой переменной, воплощая иную «степень свободы», и для каждой такой степени требуется новое измерение в фазовом пространстве. Иначе нет уверенности, что одна-единственная точка содержит достаточно информации для описания состояния системы в каждый конкретный момент времени. Простые уравнения, изучавшиеся Робертом Мэем, являлись однопространственными. Они позволяли обойтись одним числом — значением температуры или численности популяции, которое определяло местоположение точки на прямой, располагавшейся в одном измерении. Развернутая система Лоренца, описывавшая конвекцию в жидкостях, имела три