первые несколько элементов аттрактора для своей простой системы уравнений. Однако он понял, что «прослойка» двух спиральных крылообразных форм должна иметь необычную структуру, неразличимую в малых масштабах.
Эдвард Лоренц сделал его приложением к своей статье о детерминистском хаосе, вышедшей в 1963 г. Этот образ представлял собой сложную конструкцию из двух кривых, одна внутри другой, справа и пяти кривых слева. Лишь для схематичного изображения этих семи «петель» потребовалось пятьсот математических операций, с успехом выполненных компьютером. Точка, двигаясь вдоль указанной траектории в фазовом пространстве, демонстрировала медленное хаотичное вращение потоков жидкости, что описывалось тремя уравнениями Лоренца для явления конвекции. Поскольку система характеризовалась тремя независимыми переменными, данный аттрактор лежал в трехмерном фазовом пространстве. И хотя изображен был лишь его фрагмент, Лоренц смог увидеть гораздо больше: нечто вроде двойной спирали, крыльев бабочки, сотканных с удивительным мастерством. Когда увеличение количества теплоты в системе Лоренца вызывало движение жидкости в одном направлении, точка находилась в правом «крыле», при остановке течения и его повороте точка перемещалась на другую сторону.
Аттрактор был устойчивым, непериодическим, имел малое число измерений и никогда не пересекал сам себя. Если бы подобное случилось и он возвратился бы в точку, которую уже миновал, движение в дальнейшем повторялось бы, образуя периодичную петлю, но такого не происходило. В этом-то и заключалась странная прелесть аттрактора: являвшиеся взору петли и спирали казались бесконечно глубокими, никогда до конца не соединявшимися и не пересекавшимися. Тем не менее они оставались внутри пространства, имевшего свой предел и ограниченного рамками коробки. Почему такое стало возможным? Как может бесконечное множество траекторий лежать в ограниченном пространстве?
До того как изображения фракталов Мандельбро буквально наводнили научный мир, представить себе особенности построений подобных форм казалось весьма трудным. Сам Лоренц признавал, что в его собственном экспериментальном описании присутствовало «явное противоречие». «Очень непросто слить две поверхности, если каждая содержит спираль и траектории не стыкуются», — сетовал ученый. Однако в массе компьютерных вычислений он все же разглядел слабо просматривавшееся решение. Лоренц понял, что, когда спирали явно начинали соединяться, поверхности должны были делиться, образуя отдельные слои, словно в стопке писчей бумаги. «Мы видим, что каждая поверхность состоит на самом деле из двух поверхностей, так что, когда они сходятся, появляется уже четыре. Продолжая подобную процедуру, заметим, что возникает восемь поверхностей и т. д. В итоге мы можем заключить, что налицо бесконечное множество поверхностей, каждая из которых находится чрезвычайно близко к одной из двух соединяющихся поверхностей». Не удивительно, что в 1963 г. метеорологи оставили подобные рассуждения без внимания. Десятилетие спустя Руэлль, узнав о труде Лоренца, был буквально ошеломлен. Впоследствии он посетил Лоренца, однако вынес из этой встречи чувство легкого разочарования. Общие научные интересы исследователи обсуждали совсем недолго; с характерной для него робостью Лоренц избегал полемики и постарался придать визиту светский характер: ученые с женами посетили художественный музей.
Пытаясь отыскать ключи к решению загадки, Руэлль и Такенс пошли двумя путями. В частности, они попытались дать теоретическое обоснование странных аттракторов. Являлся ли аттрактор Лоренца типичным? Возможны ли какие-то иные формы? Второй тропинкой, по которой пошли ученые, стала экспериментальная деятельность. Она преследовала цель подтвердить или опровергнуть весьма далекое от математики убеждение, что странные аттракторы применимы к хаосу в природе.
В Японии исследование электронных схем, имитировавших колебание механических струн, но в ускоренном темпе, привело Иошисуке Уэда к обнаружению последовательности невероятно прекрасных странных аттракторов. В Германии Отто Рёсслер, непрактикующий доктор медицины, пришедший к исследованию хаоса через химию и теоретическую биологию, попробовал взглянуть на странные аттракторы сквозь призму философии, оставив математику на втором плане. Его имя стало ассоциироваться с одним из простейших аттракторов — узкой лентой со сгибом, которую изучали довольно широко в силу легкости ее построения. Однако ученый облек в зримую форму и аттракторы с большим числом измерений. «Представьте сосиску, внутри которой заключены, одна в другой, еще сосиски, — говорил он. — Выньте ее, сверните, сожмите и положите обратно». Действительно, сгибание и сжатие пространства оказались ключом к построению странных аттракторов и, возможно, даже к динамике порождавших их реальных систем. Рёсслер чувствовал, что эти формы олицетворяли принцип самоорганизации окружающего мира. Его воображению рисовалось нечто вроде ветроуказателя на аэродроме. «Замкнутый с одного конца рукав с отверстием на другом конце, куда рвется ветер, — разъяснял исследователь. — Вдруг ветер оказался в ловушке. Его энергия совершает нечто продуктивное, подобно дьяволу в средневековой истории. Принцип таков, что природа делает что-то против своей воли и, запутавшись сама в себе, рождает красоту».
Создание изображений странных аттракторов вряд ли можно назвать обычным делом. Запутанные пути орбит вьются сквозь три и более измерений, образуя в пространстве темный клубок, который похож на детские каракули и наделен внутренней структурой, невидимой извне. Чтобы представить подобную трехмерную «паутину» в виде плоских картин, ученые сначала применили технику проекции. Рисунок являл собой тень, отбрасываемую аттрактором на поверхность. Однако, если странные аттракторы довольно сложны, проекция смазывает все детали, и взору предстает путаница, которую почти невозможно расшифровать. Более эффективная техника заключается в построении так называемой
Схема Пуанкаре лишает аттрактор одного измерения и превращает непрерывную линию в совокупность точек. Преобразуя аттрактор в схему Пуанкаре, ученый ни на минуту не сомневается, что сохранит самую суть движения. Он может вообразить, к примеру, что странный аттрактор вьется, словно пчела, у него перед глазами и орбиты аттрактора перемещаются вверх и вниз, влево и вправо, взад и вперед по дисплею компьютера, и каждый раз, когда орбита аттрактора пересекает плоскость экрана, она оставляет светящуюся точку в месте пересечения. Такие точки либо образуют похожее на кляксу пятно произвольной формы, либо начинают вычерчивать некий контур на экране.
Описанный выше процесс соответствует отбору образцов состояния системы, который ведется не постоянно, а лишь время от времени. Когда брать пробу, т. е. из какой области странного аттрактора вырезать ломтик, — дело исследователя. Временной интервал, в котором содержится наибольшее количество информации, должен соответствовать некоему физическому свойству динамической системы. Например, на схеме Пуанкаре можно отражать скорость отвеса маятника каждый раз, когда он проходит через самую низкую точку. Или экспериментатор волен выбрать определенный регулярный промежуток времени, «замораживая» последовательные состояния во вспышках воображаемого света, исходящего из стробоскопического источника. В любом случае в получаемых изображениях проявится в конце концов изящная фрактальная структура, о которой догадывался Эдвард Лоренц.
Рис. 5.4. Структура аттрактора. Странный аттрактор, как показано на верхних рисунках, сначала имеет одну орбиту, затем десять, затем сто. Он описывает хаотичное поведение ротора-маятника, колеблющегося по всему кругу и регулярно приводимого в движение притоком энергии. Через некоторое время, когда на рисунке появится тысяча орбит