Наиболее доступный для понимания и самый простой странный аттрактор был построен человеком, весьма далеким от загадок турбулентности и гидродинамики, — астрономом Мишелем Эноном из обсерватории Ниццы на южном побережье Франции. Бесспорно, в каком-то отношении астрономия дала толчок изучению динамических систем. Планеты, двигающиеся с точностью часового механизма, обеспечили триумф Ньютона и вдохновили Лапласа. Однако небесная механика значительно отличалась от земной: земные системы, теряющие энергию на трение, являются диссипативными, чего нельзя сказать об астрономических, считающихся консервативными, или гамильтонианскими. На самом же деле в масштабе, близком к бесконечно малому, даже в астрономических системах наблюдается нечто вроде торможения. Оно происходит, когда звезды излучают энергию, а трение приливно-отливного характера истощает кинетическую энергию движущихся по орбитам небесных тел. Однако для практического удобства астрономы в своих вычислениях пренебрегают рассеиванием, а без него фазовое пространство не будет складываться и сжиматься так, чтобы образовалось бесконечное множество фрактальных слоев. Странный аттрактор не может возникнуть. А хаос?

Не один астроном сделал карьеру, обойдя стороной динамические системы, но не таков был Энон. Он родился в Париже в 1931 г., всего на несколько лет позже Лоренца. Энон тоже являл собой тип ученого, которого неумолимо влечет к математике. Ему нравилось решать небольшие конкретные вопросы, которые могли быть привязаны к определенным физическим проблемам, — по его собственному выражению, «не то, что делают современные математики». Когда компьютеры стали доступны даже любителям, машина появилась и у Энона. Собрав ее собственноручно, ученый наслаждался компьютерными забавами. Кстати, задолго до описываемых событий он исследовал особенно сложную проблему из области гидродинамики. Она касалась сферических кластеров — шаровидных скоплений звезд, в которых число светил доходило до миллиона. Это древнейшие и наиболее интересные объекты ночного неба. Плотность их внушает изумление. Как такое огромное количество звезд сосуществует в ограниченном объеме пространства и эволюционирует во времени, астрономы пытались выяснить в течение всего XX века.

С точки зрения динамики, сферический кластер, включающий в себя множество тел, представляет собой довольно важный предмет исследования. Когда речь идет о паре объектов, особых сложностей не возникает — Ньютон полностью разрешил эту проблему: каждое из пары тел, например Земля и Луна, описывает идеальный эллипс вокруг общего центра тяжести системы. Но добавьте хотя бы еще один обладающий тяготением объект, и все изменится. Задача, в которой фигурируют три тела, уже более чем трудна. Как показал Пуанкаре, в большинстве случаев она неразрешима. Можно просчитать орбиты для некоторого временного интервала, а с помощью мощных вычислительных машин удается проследить их в течение более длительного периода, пока не возникнут помехи, однако уравнения аналитически не решаются, т. е. долгосрочный прогноз поведения системы из трех тел выполнить невозможно. Устойчива ли Солнечная система? Конечно, ей присуще подобное свойство, но даже сегодня никто не уверен в том, что орбиты некоторых планет не изменятся до неузнаваемости, заставив небесные тела навсегда покинуть Солнце.

Система вроде сферического кластера слишком запутанна, чтобы подходить к ней столь прямолинейно, как к вопросу о трех телах. Однако динамику кластера можно изучить, прибегнув к некоторым хитростям. Вполне допустимо, в частности, рассматривать единичные звезды, путешествующие в пространстве, в некотором усредненном гравитационном поле с определенным центром тяготения. Время от времени две звезды подойдут друг к другу достаточно близко, и в таком случае каждое из взаимодействующих тел следует рассматривать уже по отдельности. Астрономы поняли, что сферические кластеры вообще не должны являться устойчивыми: внутри них обычно образуются так называемые бинарные звездные системы, в которых звезды парами перемещаются по небольшим компактным орбитам. Когда с подобной системой сталкивается третья звезда, одна из трех, как правило, получает резкий толчок. Со временем энергия, полученная ею благодаря такому взаимодействию, достигнет уровня, достаточного для того, чтобы звезда набрала скорость, позволяющую вырваться из кластера. Таким образом одно из тел покидает систему, а пространство кластера после этого слегка сжимается. Когда Энон выбрал кластер темой своей докторской диссертации, он произвольно предположил, что сферическое звездное скопление, изменив свой масштаб, останется внутренне подобным. Произведя расчеты, ученый получил потрясающий результат: ядро кластера «сплющится», приобретая кинетическую энергию и стремясь к бесконечно плотному состоянию. Подобное трудно было вообразить. Да и данные исследования кластеров, полученные к тому времени, не подтверждали этот вывод. Однако теория Энона, впоследствии названная гравитационно-термальным коллапсом, постепенно овладевала умами ученых.

Ободренный результатом и готовый к неожиданностям, весьма вероятным в научной работе, астроном занялся более легкими вопросами динамики звезд. Он попытался применить математический подход к давно известным задачам. Посетив в 1962 г. Принстонский университет, Энон впервые получил доступ к компьютеру и, подобно Лоренцу в Массачусетском технологическом институте, начал моделировать орбиты звезд вокруг их центров тяжести. В рамках разумного упрощения галактические орбиты можно рассматривать как орбиты планет, но с одним лишь исключением: центром гравитации здесь является не точка, а трехмерный диск.

Энон пошел на компромисс. «Для большей свободы исследований, — говорил он, — забудем на мгновение, что проблема взята из астрономии». Хотя ученый не упомянул об этом, «свобода исследования» частично означала возможность использования компьютера. Объем памяти его вычислительной машины, весьма тугодумной, был в тысячу раз меньше, чем у персональных компьютеров, появившихся двадцать пять лет спустя. Но, как и другие специалисты, позднее работавшие над проблемами хаоса, Энон полагал, что упрощенный подход себя полностью оправдает. Концентрируясь лишь на самой сути своей системы, он сделал открытия, которые можно было применить и к другим, более сложным системам. Спустя несколько лет расчет галактических орбит все еще считался «забавой теоретиков», тем не менее динамика звездных систем превратилась в объект скрупулезных и дорогостоящих исследований. К ней обратились в основном те, кого интересовали орбиты частиц в ускорителях и стабилизация плазмы в магнитном поле.

За период около 200 миллионов лет звездные орбиты в галактиках обретают три измерения, уже не образуя эллипсов совершенной формы. Реально существующие трехмерные орбиты наглядно представить так же непросто, как и воображаемые конструкции в фазовом пространстве. Это побудило Энона прибегнуть к приему, сравнимому с составлением схем Пуанкаре: ученый вообразил, что на одном конце галактики вертикально расположили плоский лист таким образом, чтобы каждая орбита, подобно лошади, минующей на скачках финишную черту, проходила сквозь него. Энон отмечал точку, в которой орбита пересекала плоскость, и прослеживал движение точки от одной орбиты к другой.

Энон отмечал точки вручную, но многие специалисты, применявшие подобную технику, уже работали с компьютером, наблюдая, как точки вспыхивают на экране, словно фонари, зажигающиеся один за другим с наступлением сумерек. Типичная орбита начиналась с точки в левом нижнем углу изображения, затем, при следующем обороте, точка на несколько дюймов смещалась вправо, новый оборот слегка отклонял ее вправо и вверх и т. д. Поначалу распознать какую-либо форму в этой россыпи было трудно, однако когда количество точек переваливало за 10–12, начинала вырисовываться кривая, напоминающая своими контурами очертания яйца. Последовательно появляющиеся точки фактически образовывали вокруг кривой окружность, но, поскольку они не появлялись на том же самом месте, со временем, когда количество их возрастало до сотни или тысячи, кривая очерчивалась четко.

Описанные орбиты нельзя назвать полностью регулярными, так как они никогда с точностью не повторяются. Однако не будет ошибкой считать их предсказуемыми и далекими от хаотичных, ибо точки никогда не возникают внутри кривой или вне ее. Вернувшись к развернутому трехмерному изображению, можно отметить, что кривые рисуют контур тороида, или бублика, а схема Энона — его поперечное сечение. До поры до времени ученый лишь наглядно изображал то, что его предшественники считали уже доказанным, — периодичность орбит. В обсерватории Копенгагена почти двадцать лет, с 1910 по 1930 г., астрономы тщательно наблюдали и просчитывали сотни орбит, однако их интересовали лишь периодичные. «Я, как и другие в то время, был убежден, что все орбиты должны характеризоваться регулярностью», — вспоминал Энон. Однако, вместе со своим студентом-дипломником Карлом Хейльсом, он продолжал рассчитывать многочисленные орбиты, неуклонно увеличивая энергетический уровень своей абстрактной системы. И вскоре ему открылось нечто совершенно новое.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату