соответствуют друг другу, так что поток становится необычайно сложным. Возможно, это и есть турбулентность. Физики приняли такое объяснение, но ни один из них не мог предсказать, когда именно увеличение энергии повлечет возникновение новой частоты или какой она будет. Никто не разглядел этих таинственно появляющихся частот при проведении опыта, потому что теория Ландау о пороге турбулентности фактически не была еще испытана.

Теоретик проделывает эксперименты мысленно, а экспериментатору приходится еще и действовать руками. Теоретик — мыслитель, экспериментатор — ремесленник; первому не нужен помощник, второй вынужден «вербовать» студентов-выпускников, уговаривать механиков, обхаживать ассистентов лаборатории. Теоретик-чистюля работает там, где нет шума и грязи; экспериментатор же связан с объектом опыта так же тесно, как скульптор в мастерской, который часами прикован к бесформенной глине и старается то ласковым, то резким движением придать ей нужную форму. Теоретик может мысленно представлять своих коллег подобно наивному Ромео, грезящему о прекрасной Джульетте, а соратники экспериментатора, часами просиживающие в лаборатории, жалуются, курят, пьют кофе, потеют.

Эти двое нужны друг другу, однако в их отношения вкрадывается доля неравенства еще с тех древних времен, когда всякий ученый и размышлял, и ставил опыты одновременно. Хотя в некоторых, самых лучших экспериментаторах осталось что-то от теоретика, беседа ученых мужей явно не клеится. В конечном счете престиж теоретиков оказывается выше. Особенно ярко это проявляется в физике высоких энергий: теоретики буквально купаются в лучах славы, в то время как экспериментаторы становятся техниками высокой квалификации, имеющими дело с дорогостоящим и сложным оборудованием. В послевоенные десятилетия, когда блеск физики определяло исследование элементарных частиц, лучшими экспериментами стали те, что проводились на ускорителях частиц. Масса, заряд, спин, симметрия — эти абстракции зачаровывали тех, кто не принадлежал к академической среде, но пытался идти в ногу со временем, однако лишь для некоторых ученых изучение атомных частиц действительно являлось физикой. Переход к изучению все более и более мелких частиц в кратчайших временных промежутках требовал все более высокой энергии, а значит — модернизации оборудования. Экспериментальная ветвь физики элементарных частиц с годами прогрессировала, в ней трудилось множество ученых, над постановкой крупных опытов работали целые команды. Статьи по физике частиц в журнале «Физическое обозрение» всегда выделялись тем, что перечень авторов занимал едва ли не четверть публикации.

Некоторые экспериментаторы, впрочем, предпочитали работать в одиночестве, на худой конец вдвоем. В своих опытах они задействовали те вещества, которые были доступны. В то время как определенные разделы физической науки, вроде гидродинамики, утрачивали актуальность, физика твердого тела, наоборот, выходила на первый план. Подведомственная ей сфера исследований настолько расширилась, что название дисциплины следовало бы поменять на более точное — «физика конденсированного вещества», т. е. физика материалов. В этой области, надо сказать, оборудование было куда проще, а связь между теоретиками и экспериментаторами — намного прочнее. Первые не проявляли чрезмерного снобизма, а вторые не пытались от них обороняться.

При всем том они на многое смотрели по-разному. В частности, теоретик запросто мог, прервав доклад экспериментатора, осведомиться: «Нельзя ли сделать ваши данные более убедительными? Не кажется ли вам, что данный график несколько неясен? Не стоит ли измерить данную величину в более широких пределах, чтобы получить больший объем информации?»

В ответ Гарри Суинни, выпрямившись во весь рост (около пяти с половиной футов), мог произнести с природным очарованием уроженца Луизианы, в котором чувствовалась, однако, нью-йоркская вспыльчивость: «Факты соответствуют истине. Да, это правда, при условии, что мы имеем бесконечно много „чистых“ экспериментальных данных. — И, резко повернувшись к доске, добавить: — В действительности в нашем распоряжении лишь ограниченное количество информации, да и то с погрешностями».

Суинни ставил опыты с веществами. Еще будучи студентом Университета Джона Хопкинса он почувствовал пьянящее очарование физики частиц, и это стало для него поворотным пунктом в судьбе. Поговорив как-то с Марри Гелл-Маном, от которого буквально веяло энтузиазмом, Суинни не устоял, однако, наблюдая за работой старшекурсников, он обнаружил, что все они писали компьютерные программы или паяли искровые камеры. Именно тогда Суинни завязал знакомство с опытным физиком, который приступил к исследованию фазовых переходов от твердого тела к жидкости, от немагнитного вещества к магниту, от проводника к сверхпроводнику. Довольно долгое время Суинни ютился в небольшой комнатке; размером она была с чулан, зато начинающий ученый обитал там один. Он стал заказывать приборы по каталогу, и вскоре в его скромном жилище появился лабораторный стол, лазер, зонды и кое-какое холодильное оборудование. Суинни сконструировал прибор для измерения теплопроводности углекислого газа вблизи критической точки конденсации. Многие физики полагали, что изменения теплопроводности незначительны, однако, как обнаружил Суинни, то было заблуждение: теплопроводность менялась весьма в значительных пределах. Все это будоражило. Один, в крошечной комнатке, он сделал открытие, увидев потустороннее свечение паров вещества, любой субстанции, вблизи критической точки, — свечение, названное «опаловым» из-за беловатой опаловой окраски рассеивавшихся лучей.

Как и многие хаотичные по своей природе явления, фазовые переходы характеризуются особым типом макроскопичного поведения, предугадать которое, глядя на мельчайшие фрагменты, весьма сложно. При нагревании твердого тела его молекулы начинают вибрировать под действием поступающей энергии, они устремляются к поверхности, противодействуя связывающим их силам, и тем самым вызывают расширение объема вещества. Чем сильнее нагрев, тем больше расширяется вещество, и как лопается веревка после долгого растягивания, так и изменения становятся непредсказуемыми и прерывистыми при определенных давлении и температуре. Кристаллическая структура постепенно исчезает, и молекулы удаляются друг от друга, повинуясь законам, установленным для жидкости, которые нельзя вывести из закономерностей, определенных для твердого тела. Средняя энергия атома лишь слегка поменялась, однако вещество сейчас уже жидкость, магнит или сверхпроводник, т. е. приобрело новое качество.

Гюнтер Алерс в лабораториях корпорации «AT & Т Bell» в Нью-Джерси исследовал так называемый сверхжидкостный переход в жидком гелии, при котором по мере падения температуры твердое вещество превращается в жидкость с волшебными свойствами, не обнаруживающую явно выраженной вязкости или трения. Другие же занимались сверхпроводимостью. Суинни исследовал точку фазового перехода между жидкостью и паром. И он, и Алерс, Пьер Берг, Джерри Голлаб, Марцио Джиглио и другие экспериментаторы в США, Франции и Италии — новое поколение физиков, занимавшихся фазовыми переходами, — в середине 70-х годов искали новые объекты для исследований. Подобно тому как почтальон знает во всех подробностях все аллеи и дома своего участка, так и они знали назубок все особые признаки вещества, меняющего свое состояние. Они изучали предел равновесного состояния вещества.

Все исследователи фазовых переходов, почувствовав под собой коварную трясину сомнений, ступали на спасительные камни аналогии. Фазовый переход от немагнитного состояния к магнитному оказался подобен переходу «жидкость — пар». Переход от жидкости к сверхжидкости демонстрировал подобие переходу от проводника к сверхпроводнику. Математические вычисления, описывающие один опыт, применялись к множеству других, и в течение 70-х годов проблема была почти решена. Вопрос заключался лишь в том, сколь далеко можно распространить вновь созданную теорию. Какие иные изменения в окружающем нас мире при их ближайшем рассмотрении окажутся фазовыми переходами?

Использование технических приемов, практикуемых при изучении фазовых переходов, для исследования потоков жидкости нельзя назвать ни сверхоригинальной идеей, ни самоочевидным подходом.

На особую оригинальность он не мог претендовать, потому что еще в начале XX века величайшие ученые — пионеры гидродинамики Рейнольдс, Рэлей и их последователи — заметили, что в ходе тщательно контролируемого эксперимента с жидкостью движение ее качественно меняется, происходит разветвление, или бифуркация. Например, при нагревании снизу сосуда с жидкостью она из состояния покоя приходит в движение. Слишком велик был соблазн, и, поддавшись ему, специалисты предположили, что физическая природа бифуркации как раз и напоминает происходящее в веществе при фазовых переходах.

Очевидным подходом применение подобных методов не назовешь, в силу того что описанные выше

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату