относительности и о причине турбулентности. «Думаю, что Господь ответит мне на первый из них», — заметил Гейзенберг.

Теоретическая физика и явление турбулентности закончили игру вничью, — наука словно бы наткнулась на заколдованную черту и замерла возле нее. Вблизи магической границы, где вещество еще устойчиво, есть над чем поработать. К счастью, плавно текущая жидкость ведет себя совсем не так, как если бы каждая из бессчетного множества молекул двигалась самостоятельно: капельки жидкого вещества, находившиеся рядом в начальной точке, обычно остаются поблизости друг от друга, словно лошади в упряжке. Инженеры-гидротехники располагают вполне надежными уравнениями, описывающими поведение такого ламинарного потока: они используют знания, накопленные еще в XIX веке, когда движение жидкостей и газов являлось одной из первостепенных проблем физической науки.

К нашему времени проблема эта уже ушла в тень, и даже самые глубокие умы верили, что в динамике жидкостей не осталось тайн, кроме одной, неведомой и небесам. С практической стороны все выглядело таким понятным, что с легким сердцем могло быть отдано на откуп специалистам-техникам. По мнению физиков, динамика жидкости из научной проблемы превратилась в инженерную. Молодые светила физики и так находили себе занятие, и исследователи жидкостной динамики попадались уже только на технических факультетах университетов. Впрочем, у практиков интерес к турбулентности был несколько односторонним и сводился к тому, как устранить это явление. Иногда турбулентность даже желательна (как, например, в реактивном двигателе, где эффективное возгорание зависит от быстрого образования смеси), но в большинстве случаев она равносильна бедствию. Турбулентный воздушный поток, воздействуя на крыло самолета, затрудняет взлет. Турбулентный поток внутри нефтепровода задерживает движение жидкости. Правительства и корпорации вкладывают огромные средства в конструирование самолетов, турбинных двигателей, гребных винтов, подводных лодок и других подобных устройств, которые двигаются в жидкой или газообразной среде. Исследователей интересует кровоток в сосудах и сердечных клапанах, их заботят вихревые токи и водовороты, пламя и ударные волны при взрывах различного типа. Считается, что проектом атомной бомбы во время Второй мировой войны занимались физики-ядерщики, но в действительности же все относящиеся к ядерной физике вопросы были решены еще до начала работ, а в Лос-Аламосе занимались газо- и гидродинамическими аспектами.

Что же представляет собой турбулентность? Полную неупорядоченность при всех масштабах, крошечные вихри внутри огромных водоворотов. Турбулентность неустойчива и в высшей степени диссипативна, т. е. обладает способностью замедлять движение, истощая энергию. Она суть беспорядочное движение. Но все же каким образом течение жидкости превращается из плавного в турбулентное? Представьте себе безупречно гладкую полую трубку, в высшей степени стабильный источник водоснабжения, причем вся конструкция надежно защищена от вибрации. А теперь задайте себе вопрос: как же в потоке, текущем внутри трубы, может появиться что-то беспорядочное?

Кажется, все правила здесь терпят фиаско. Когда поток плавный, или ламинарный, небольшие помехи исчезают, однако сразу же вслед за появлением турбулентности их количество резко возрастает, загадывая науке новую загадку. Русло ручья у подножия скалы превращается в водоворот, который все увеличивается, расщепляется и кружится по мере движения воды вниз по течению, а струйка сигаретного дыма, что тихо вьется в воздухе, поднимаясь вверх над пепельницей, вдруг ускоряется и, достигнув критической скорости, распадается на бурные вихри. Порог турбулентности можно наблюдать и измерить в ходе лабораторных экспериментов; его тестируют для каждого крыла самолета или гребного винта при испытании в аэродинамической трубе. Тем не менее уловить его природу сложно. Как правило, полученным данным не хватает универсальности, — изучение методом проб и ошибок крыла «Боинга-707» ничего не дает для проектирования крыла истребителя «F-16». Даже суперкомпьютеры оказываются почти беспомощными перед лицом хаотичного движения вещества.

Представим, что нечто сотрясает жидкость, вызывая внутри нее волны. Жидкость обладает вязкостью, и по этой причине сообщенная ей при встряхивании энергия из нее уходит. Если перестать встряхивать жидкость, она придет в состояние покоя. Что же происходит, когда вы встряхиваете жидкость? В результате этой процедуры жидкости сообщается низкочастотная энергия, низкие частоты преобразуются в более высокие, порождая все более и более стремительные вихревые токи. Этот процесс, приводящий к рассеиванию энергии жидкости, был еще в 30-х годах рассмотрен А. Н. Колмогоровым. Он разработал математическое описание динамики вихрей, рассматривая их во все меньшем и меньшем масштабе — до тех пор пока не достиг предела, при котором вихри становились столь крошечными, что вязкость вещества на них уже не влияла.

Для большей наглядности Колмогоров представил, что вся жидкость состоит из небольших вихревых потоков и, таким образом, она везде одинакова. Подобное предположение об однородности неверно, о чем догадался еще Пуанкаре сорок лет назад, понаблюдав в бурной реке водяные завихрения, перемежавшиеся с участками спокойного течения. Таким образом, нестабильность течения локальна, и энергия фактически рассеивается лишь в части пространства. Если внимательно разглядывать турбулентный поток в любом масштабе, можно заметить, что обнаруживаются все новые и новые области спокойного течения. Таким образом, гипотеза об однородности уступает место предположению о прерывистости. Такое, отчасти идеализированное описание выглядит в высшей степени фрактальным, с чередующимися бурными и плавными зонами, которые заметны при любых масштабах, начиная от крупных и заканчивая мелкими. Но и эта картина в определенной мере представляет собой не полное отражение действительности.

Весьма близким к сформулированному выше, но в то же время самостоятельным является вопрос о том, что происходит с началом турбулентности. Каким образом поток жидкости пересекает границу между плавным и бурным? Какие промежуточные стадии пройдет турбулентность, прежде чем даст о себе знать в полной мере? На эти вопросы отвечала теория, звучавшая вполне резонно. Эта общепринятая парадигма своим появлением обязана Льву Давыдовичу Ландау, великому русскому ученому, чьи разработки в области гидродинамики до сих пор считаются одной из вершин физической науки. Модель Ландау являет собой нагромождение соревнующихся вихрей. Он предположил, что, когда в систему поступает больше энергии, в каждый момент времени возникает новая частота, не совместимая с предыдущей, словно скрипичная струна отзывается на усиление движения смычка звучанием второго диссонирующего тона, а затем — третьего, четвертого и т. д., до тех пор пока звуки не сольются в непостижимую какофонию.

Любое жидкое или газообразное вещество представляет собой совокупность единичных частиц- молекул, число которых столь велико, что может показаться бесконечным. Если бы каждая частица двигалась сама по себе, появилось бы бесконечно много вариантов движения жидкости (говоря научным языком, бесконечно много «степеней свободы»), и уравнения, описывающие движение, включали бы бесконечное количество переменных. Однако ничего подобного не происходит: движение каждой молекулы в значительной степени зависит от движения ее соседок, и степеней свободы (по крайней мере, при спокойном течении) может быть лишь несколько. Потенциально сложные движения остаются связанными, расположенные рядом частицы не расходятся вовсе или расходятся плавно и линейно, образуя аккуратные линии на фотографиях, сделанных в аэродинамической трубе. Частицы в струйке сигаретного дыма также некоторое время поднимаются вверх как единое целое.

Затем появляется возмущение, многообразие таинственных бурных порывов. Иногда такие движения даже получали имена: «осциллятор», «перекрестные ролики», «узел», «зигзаг», «вздутые вены» (какие бывают при варикозе). По мнению Ландау, возникающие нестабильные движения попросту скапливались, накладываясь одно на другое и создавая таким образом витки с частично совпадающими скоростями и размерами. Умозрительно такая общепринятая модель турбулентности, казалось, подходила под реальные факты, а на ее бесполезность с точки зрения математики посмотрели сквозь пальцы. Итак, Ландау, построив неразрешимую с математической точки зрения модель, сохранил свое достоинство ученого, но на взгляд практика это было полным банкротством.

Представим, что вода со слабым свистом медленно струится по трубке или течет внутри цилиндра. Мысленно увеличим давление, вызывая тем самым появление ритмичных колебаний вперед и назад. Жидкость медленно бьет в стенки трубки. Вновь нажмем на кнопку воображаемого прибора, увеличив давление. Неизвестно откуда появится вторая частота, не согласующаяся с первой. Дисгармонирующие ритмы, будто соревнуясь, накладываются друг на друга, и вот уже появилось довольно запутанное движение: волны ударяют о стенки трубки, перемешиваясь одна с другой так, что уловить их ритм невозможно. С ростом давления возникает третья, затем четвертая, пятая, шестая частоты, и все они не

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату