Добавление второго измерения означает ввод второго параметра, второй степени свободы. Например, в случае с автоматом для игры в пинбол можно принять во внимание эффект от изменившегося угла наклона игрового поля. Здесь обнаружится своего рода «колебательная сложность» — сущее наказание для инженеров, которые отвечают за проверку устойчивости реальных систем, обладающих более чем одним параметром, в частности энергетических сетей и ядерных станций, в 80-х годах ставших объектами исследований вдохновленных хаосом ученых. При одном значении параметра A параметр B должен порождать упорядоченное поведение с последовательными участками стабильности. Инженеры могут проводить исследования и составлять графики того типа, какой предполагает их подготовка, ориентированная на линеаризацию результатов. И все же не исключено, что где-то поблизости прячется другое значение параметра A, существенно влияющее на параметр B.

Йорк демонстрировал на конференциях изображения границ фрактальных бассейнов. Некоторые из них описывали вынужденное поведение маятников, завершавшееся одним из двух конечных состояний. Как хорошо знали слушатели, такой маятник — весьма многоликий и хорошо известный в повседневной жизни осциллятор. «Никто не может утверждать, что я обманул систему, выбрав маятник, — с улыбкой говорил Йорк. — Подобные вещи мы наблюдаем в природе повсюду, однако их поведение в корне отличается от описанного в литературе. Это фрактальное поведение беспорядочного типа». Картины походили на фантастические водовороты белого и черного цветов, словно кухонный миксер остановился, не до конца смешав ваниль и шоколад для пудинга. Для создания подобных изображений компьютер просчитал решетку размером тысяча на тысячу точек, каждая из которых представляла конкретное начальное положение маятника, и графически отобразил результат, обозначив точки белым или черным цветом. На картине проявились бассейны притяжения, деформированные в соответствии с законами движения Ньютона, и обозначилась граница. Как правило, более трех четвертей всех показанных на экране точек находилось на пограничной черте.

Исследователям и инженерам эти изображения преподали хороший урок, послужив одновременно и предостережением, — слишком часто поведение сложных систем прогнозируют исходя из ограниченных данных. Наблюдая за системой, которая функционировала нормально, оставаясь в узких рамках нескольких параметров, инженеры надеялись экстраполировать результат более или менее линейным образом на необычное поведение. Но исследование границы фрактальных бассейнов продемонстрировали, что рубеж между состояниями покоя и возмущения куда сложнее, чем кто-либо мог себе представить. «Вся энергетическая сеть Восточного побережья является колебательной системой, по преимуществу стабильной. Нас интересует, что произойдет, если потревожить ее, — объяснял Йорк. — Необходимо знать, что представляет собой граница. Большинство даже не имеет понятия, как она выглядит».

Границы фрактальных бассейнов адресовали ученых к важнейшим дискуссионным вопросам теоретической физики. В этом смысле фазовые переходы являлись своего рода отправными пунктами. Пайтген с Рихтером рассмотрели одну из наиболее изученных разновидностей — намагничивание и размагничивание материалов. Полученные ими картины границ обнаруживали удивительнейшую сложность, начинавшую казаться вполне естественной. Изображение напоминало головки цветной капусты с причудливым рисунком выпуклостей и борозд. По мере изменения параметров и увеличения деталей очертания становились все более и более неупорядоченными, пока вдруг в глубине зоны возмущения не появилась знакомая, сплющенная у полюсов, форма, усеянная ростками: система Мандельбро, где каждый завиток и каждый атом располагались на своем месте. «Возможно, стоит поверить в магию», — писали ученые, осознав, что перед ними предстало очередное доказательство всеобщности.

Рис. 8.2. Границы фрактальных бассейнов. Даже когда долгосрочное поведение динамической системы не является хаотическим, хаос может появиться на границе двух типов устойчивого поведения. Зачастую динамическая система характеризуется более чем одним состоянием равновесия, как, например, маятник, который может остановиться, притянувшись к одному из двух магнитов, встроенных в его основание. Каждое состояние равновесия является аттрактором. Граница между двумя аттракторами может быть сложной, но спокойной (слева), или же сложной, но не плавной. В высшей степени фрактальная россыпь белых и черных фрагментов (справа) есть диаграмма маятника в фазовом пространстве. Система, несомненно, достигнет одного из возможных устойчивых состояний. Для некоторых начальных условий результат вполне предсказуем. Черное есть черное, а белое является белым. Но вблизи границы прогнозировать что-либо уже невозможно.

Майкл Барнсли пошел по иному пути: мысли его обратились к формам, созданным самой природой. Особенно его занимали образы, исходившие от живых организмов. Он экспериментировал с множествами Джулиа, а также с другими процессами, постоянно отыскивая способы генерации еще большей изменчивости. В итоге он обратился к неупорядоченности как к основе неизвестных ранее методов моделирования естественных форм. Рассуждая о новой технике в статьях, ученый именовал ее «глобальным построением фракталов посредством систем итерированных функций», а в разговоре отзывался о своем изобретении как об «игре хаоса».

Чтобы сыграть в такую игру, необходим компьютер с графическим пакетом программ и генератором случайных чисел, но в принципе будет достаточно листа бумаги и монетки. Выбираем на листе начальную точку — неважно, где именно. Придумываем два правила — для орла и для решки. Правила указывают, каким образом откладывать новые точки, например: «Переместиться на два дюйма на северо-восток» или «Приблизиться на 25 % к центру». Подбрасывая монетку, начинаем отмечать точки. Используем правило орла, когда выпадает орел, и правило решки, когда выпадает решка. Если мы отбросим первые пятьдесят точек, как сдающий карты прячет первые несколько карт при новой сдаче, то обнаружится, что «игра хаоса» воспроизводит не случайное поле или разбросанные точки, а форму, проявляющуюся все более и более четко по мере продолжения игры.

Основное предположение Барнсли звучало так: множества Джулиа и другие фрактальные формы, хотя и считаются по справедливости итогом детерминистского процесса, обладают второй равнозначной ипостасью как предел неупорядоченного процесса. Ради сравнения ученый предложил представить, к примеру, карту Великобритании, нарисованную мелом на полу комнаты. Топографу со стандартным набором инструментов будет весьма непросто измерить площадь всех изгибов, хотя бы тех же фрактальных береговых линий. Но вообразите, что мы подбрасываем в воздух одно за другим зернышки риса, которые в беспорядке ложатся на пол, а затем подсчитываем количество зерен, оказавшихся в пределах контура карты. Со временем результат начинает приближаться к площади интересующих нас форм, как предел случайного процесса. Говоря на языке динамики, формы Барнсли оказались аттракторами.

«Игра хаоса» использовала фрактальные характеристики некоторых изображений, то их качество, что они могли быть созданы из малых копий основной картины. Выбор правил для случайной итерации позволяет уловить основополагающую информацию о той или иной форме, а сама итерация правил выдает эти же данные обратно независимо от масштаба. В указанном смысле чем более фрактальной является форма, тем более простыми окажутся соответствующие принципы. И Барнсли быстро обнаружил, что может воспроизвести все ставшие уже классическими фракталы из книги Мандельбро. Техника последнего представляла собой бесконечную последовательность построений и совершенствований: скажем, для создания снежинки Коха или ковра Серпински нужно, удалив линейные сегменты, заменить их точно определенными фигурами. Применяя вместо этого «игру хаоса», Барнсли создавал изображения, казавшиеся вначале лишь расплывчатыми карикатурами, но со временем вырисовывавшиеся все более четко. Вместо процесса усовершенствования, в котором не возникло необходимости, использовался лишь один набор правил, с помощью которого в итоге и воплощалась нужная форма.

Барнсли и его коллеги начали безудержно конструировать всякие изображения, многообразные формы, напоминавшие изогнутые капустные листья, налет плесневых грибков и брызги грязи. Ключевым стал теперь вопрос о том, как повернуть процесс вспять, как вывести набор правил для заданной формы. Ответ, названный ученым «теоремой коллажа», оказался настолько простым, что заставлял подозревать подвох. Для начала следует изобразить на экране дисплея форму, которая вас интересует. (Барнсли, будучи

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату