Что бы ни думали о хаосе специалисты, исследующие процесс познания, они не могли больше моделировать разум как статическую структуру. Двигаясь от нейронов по восходящей, они выявили целую иерархическую сеть, которая обеспечивает взаимодействие микро- и макромасштабов, столь характерное для турбулентности в жидкостях и для других сложных динамических процессов.
Структура, зарождающаяся среди бесформенности, — такова главная прелесть живого и его основная загадка. Жизнь извлекает порядок из моря неустойчивости. Эрвин Шрёдингер, пионер квантовой теории и один из немногих физиков, которые размышляли над вопросами биологии, объяснил это сорок лет назад тем, что живому организму присущ «удивительный дар концентрировать в себе некую „струю порядка“ и таким образом избегать распада на хаос атомов». Будучи физиком, Шрёдингер четко понимал, что структура живого вещества отличается от тех форм материи, которыми занималась его наука. Основным «кирпичиком» в здании живого организма ему представлялся
Точка зрения Шрёдингера казалась необычной. Та мысль, что жизнь одновременно и упорядоченна, и сложна, выглядела трюизмом. Представление об апериодичности как источнике особых свойств живого граничило с мистикой. Во времена Шрёдингера ни математики, ни физики по-настоящему не поддержали его идею. Для анализа иррегулярности как основного компонента жизни еще не существовало инструментов. Но сейчас они есть.
Глава 11
Хаос
Что лежит за ним?
Никак не менее чем классификация составляющих хаоса обозревается здесь.
Двадцать лет назад Эдвард Лоренц размышлял о загадках атмосферы, Мишель Энон — о звездах, Роберт Мэй — о балансе в природе. Бенуа Мандельбро трудился в корпорации IBM, Митчелл Файгенбаум был студентом последнего курса Городского колледжа Нью-Йорка, Дойн Фармер — мальчишкой из Нью- Мексико. В те времена большинство ученых-практиков придерживались определенных воззрений на феномен сложности. Воззрения эти были настолько очевидными, что не нуждались в словесном изложении. Лишь позже потребовалось четко сформулировать эти взгляды, чтобы проанализировать их суть и вынести на всеобщее рассмотрение. Они сводились к следующему.
Ныне все изменилось. За последние двадцать лет математики, физики, биологи и астрономы выработали альтернативную идею: простые системы дают начало сложному поведению, а сложные системы порождают простое поведение. И что самое главное, законы сложности обладают всеобщностью, которая ни в коей мере не зависит от особенностей составляющих систему элементов.
Перемена никак не сказалась на деятельности многих ученых-практиков: физиков, занимавшихся изучением частиц, неврологов и даже математиков. Они продолжали исследования в рамках своих дисциплин. Тем не менее в умы их была заронена идея о существовании феномена хаоса: они знают, что удалось истолковать некоторые сложные явления, а иные, вероятно, нуждаются в переосмыслении. Ученые, которые вглядывались в течение химических реакций, или наблюдали за жизнью насекомых в ходе трехлетнего эксперимента, или моделировали изменения температуры воды в океане, уже не могли, как раньше, игнорировать внезапные колебания или отклонения. Для некоторых это означало лишь дополнительные трудности. Но, будучи прагматиками, ученые прекрасно знали, что на исследования в этой сфере, которую с трудом можно назвать математикой, федеральное правительство и исследовательские центры корпораций готовы ассигновать средства, и все больше и больше специалистов понимали, что хаос позволяет продолжить работу с информацией, отложенной в долгий ящик потому, что она выглядела чересчур странной. Обособление научных дисциплин казалось им все более досадным препятствием; один за другим ученые осознавали, что изучать обособленные от целого части бесполезно. Для них хаос знаменовал конец редукционизма в науке.
Непонимание, неприятие, гнев, одобрение — целая гамма эмоций была выплеснута на тех, кто поддерживал изучение хаоса с самого начала. Джозеф Форд из Технологического института Джорджии, в Атланте, вспоминал, как в 70-х годах, читая лекцию группе специалистов по термодинамике, упомянул о хаотическом поведении, которое просматривалось в уравнении Даффинга, хрестоматийной модели простого осциллятора, подверженного трению. Для самого Форда присутствие хаоса в указанном уравнении было весьма любопытным фактом, который не вызывал сомнений, хотя статья о нем была опубликована в журнале «Письма в „Физическое обозрение“» лишь через несколько лет. Но с таким же успехом Форд мог поведать собранию палеонтологов о наличии перьев у динозавров — им было лучше знать.
«Когда я обмолвился об этом, аудитория — Господи Боже! — буквально взорвалась. Я услышал что-то вроде: „Мой отец изучал это уравнение, дед занимался им, и почему-то они не обнаружили там такого, о чем рассказываете нам вы!“ Заявляя, что природа сложна, вы должны быть готовы к сопротивлению. Мне была непонятна такая враждебность».
За окном медленно садилось тусклое зимнее солнце. Форд, уютно расположившись в своем кабинете, потягивал содовую из огромной кружки с кричащей надписью «Хаос». Его младший коллега Рональд Фокс рассказывал о метаморфозе, приключившейся с ним после покупки компьютера «Apple II» для сына. В то время ни один уважающий себя физик не приобрел бы эту модель для работы. Прослышав о том, что Митчелл Файгенбаум обнаружил всеобщие законы, управляющие поведением систем обратной связи, Фокс рискнул написать короткую программу, которая позволила бы разглядеть их особенности на дисплее компьютера. Он смог наблюдать на экране абсолютно все: похожие на вилы бифуркации, устойчивые линии, разветвляющиеся сначала на две, потом на четыре, затем на восемь, появление самого хаоса, а внутри него — поразительный геометрический порядок. «За пару дней всю работу Файгенбаума можно