свой возраст), отобрать и вручить вам все карточки, на которых оно встречается, и вы немедленно назовете задуманное число. Секрет этого фокуса также прост: вы просто суммируете степени числа 2, стоящие в левом верхнем углу каждой таблицы. Например, если были отобраны и вручены вам таблицы C и F, то вы суммируете числа 4 и 32 и узнаете, что было задумано число 36.

По какому принципу выбраны числа на каждой карточке? Каждое число, имеющее в двоичной записи единицу в первом разряде справа, заносится в таблицу A. Следовательно, в эту таблицу вписаны все нечетные числа от 1 до 63. В карточку B заносятся все числа, имеющие в двоичной записи единицу во втором разряде справа, в карточку C — все числа, имеющие единицу в третьем разряде справа и т. д. Заметим, что число 63 в двоичной системе записывается как 111111, то есть имеет единицы во всех шести разрядах, и поэтому встречается на всех шести карточках.

Иногда фокусники придают этому фокусу налет таинственности, окрашивая карточки в различные цвета и запоминая, какой цвет соответствует той или иной степени числа 2. Пусть, например, красная карточка означает 1, оранжевая — 2, желтая — 4, зеленая — 8, голубая — 16 и фиолетовая — 32 (мы выбрали 6 цветов радуги по порядку, пропустив синий). Фокусник становится в дальнем конце комнаты и просит кого- нибудь из зрителей отложить в сторону карточки, на которых встречается задуманное число. По цвету отложенных карточек фокусник без промедления может назвать задуманное число.

Распиленный браслет

Однажды юная Глория из Арканзаса отправилась в Калифорнию. Ей необходимо было снять на неделю номер в гостинице.

Портье в гостинице встретил ее весьма нелюбезно.

Портье. Могу предложить только номер за 20 долларов в сутки. Плата наличными.

Глория. Простите, сэр, у меня нет при себе денег. Есть только этот золотой браслет. Каждое из его 7 звеньев стоит дороже 20 долларов.

Портье. Так и быть, давайте сюда ваш браслет.

Глория. Не торопитесь. Я попрошу какого-нибудь ювелира распилить браслет и буду отдавать вам по 1 звену в день, а к концу недели, когда мне пришлют из дому деньги, отдам браслет в починку.

После долгих споров портье согласился. Но перед Глорией встала задача: как распилить браслет?

Глория. Торопиться не следует. Ведь ювелир потребует с меня плату за каждое распиленное и вновь запаянное звено браслета.

Поразмыслив, Глория поняла, что ей вовсе не нужно распиливать все звенья, поскольку отдельные части браслета можно комбинировать так, чтобы число оставшихся у портье звеньев каждый раз соответствовало плате за номер. Сколько звеньев вы бы приказали распилить на месте Глории?

Достаточно распилить лишь одно-единственное звено: третье с любого конца цепи. Браслет распадется на 3 части длиной в 1 звено, 2 звена и 4 звена. Отдавая их в необходимой комбинации портье и получая предыдущие, Глория сможет оставлять у портье каждый день на 1 звено больше, чем накануне.

Решающее звено

Чтобы решить эту задачу, необходимо принять во внимание два соображения. Во-первых, понять, что наименьший набор отрезков золотой цепочки, позволяющий оставить у портье любое число звеньев от 1 до 7, состоит из 3 отрезков длиной в 1, 2 и 4 звена. Как мы уже знаем из решения предыдущей задачи, эти числа — не что иное, как последовательные степени числа 2, положенные в основу двоичной системы счисления.

Во-вторых, необходимо понять, что разделить браслет на части длиной в 1, 2 и 4 звена можно распилив одно-единственное звено.

Задача допускает обобщение на случай, когда браслет или цепочка состоят более чем из 7 звеньев. Например, пусть у Глории имеется с собой золотая цепочка из 67 звеньев, которую необходимо распилить с той же целью, что и злосчастный браслет, — для уплаты за проживание в гостиничном номере от 1 до 67 суток по 1 звену за сутки. Оказывается, что в этом случае достаточно распилить лишь 3 звена. Вы знаете, какие именно? Может быть, вы можете предложить общий метод решения задачи, позволяющий распиливать минимальное число звеньев цепи произвольной длины?

Интересный вариант этой задачи возникает в том случае, если первоначально концы n-звенной цепочки соединены так, что цепочка превратилась в замкнутую петлю. Например, предположим, что у Глории есть золотая цепочка из 79 звеньев. Сколько звеньев необходимо распилить, чтобы Глория могла оплатить от 1 до 79 суток пребывания в гостинице из расчета по 1 звену за сутки?

Глава 2

Геометрические находки

Неожиданные решения задач о геометрических телах и фигурах

Геометрия занимается изучением свойств тел и фигур, хотя такое определение настолько широко, что почти лишено смысла. Так, оно позволяет считать геометром члена жюри любого конкурса красоты, поскольку тот судит о «свойствах тел и фигур», хотя под телами и фигурами он понимает нечто иное, чем геометр. Когда о какой-нибудь линии кто-либо замечает, что она необычайно изящна или выразительна, то, хоть речь идет о кривой, то есть объекте, действительно изучаемом в геометрии, само высказывание относится скорее к области эстетики, чем к математике.

Попробуем уточнить, что такое геометрия, и определим ее с помощью такого понятия, как симметрия. Под симметрией принято понимать такое преобразование фигуры, которое оставляет фигуру неизменной. Например, буква H симметрична относительно поворота на 180°. Это означает, что если букву H повернуть на 180° (поставить «вверх ногами»), то она перейдет в фигуру, неотличимую от буквы H в исходном положении (разумеется, при условии, если перекладина в букве H находится строго посредине). Слово «AHA», стоящее на обложке этой книги, обладает зеркальной, или двусторонней симметрией: если приставить к нему справа или слева зеркало, то зеркальное отражение слова будет неотличимо от оригинала.

Любой раздел геометрии можно определить как науку о свойствах фигур, не изменяющихся при определенных преобразованиях симметрии. Например, евклидова геометрия на плоскости занимается изучением свойств, остающихся неизменными (инвариантных) при движении фигуры по плоскости, поворотах, зеркальных отражениях и равномерных сжатиях и растяжениях. Аффинная геометрия занимается изучением свойств, инвариантных относительно «перекашивания» фигуры. Проективная

Вы читаете Есть идея!
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату