геометрия изучает свойства, инвариантные относительно проецирования. Топология имеет дело со свойствами, которые сохраняются неизменными, когда фигура претерпевает сколь угодно сильные искажения без разрывов и склеиваний, аналогичные деформациям фигуры, изготовленной из гибкого, растяжимого и прочного материала.

Хотя геометрические мотивы встречаются во всех главах нашей книги, в этой главе мы собрали задачи, в которых геометрический аспект имеет явное преимущество перед всеми остальными. При отборе предпочтение отдавалось таким задачам, которые при надлежащем подходе (и «везении») допускают простые и ясные решения. Первая же задача — о разрезании сыра — отчетливо показывает, как тесно переплетаются даже в простейших задачах «сферы влияния» самых различных разделов математики: ее можно рассматривать как задачу по планиметрии, стереометрии, комбинаторике, теории чисел. В этой же задаче нетрудно усмотреть и зачатки исчисления конечных разностей.

«Пасутся кони на другом поле», как ни странно, — топологическая задача. Метод нитей и пуговиц позволяет свести ее к задаче о точках на простой замкнутой кривой. Форма замкнутой кривой для решения задачи не имеет ни малейшего значения — важны лишь топологические свойства кривой. Мы приводим решение задачи для случая, когда точки расположены на окружности, но с тем же успехом мы могли взять кривую, образующую периметр квадрата или треугольника.

Следующие две задачи («Невиданный меч» и «Пари на полюсе») снова выводят нас из плоскости в евклидову геометрию трехмерного пространства. При взгляде на маршруты полетов невольно вспоминается другая знаменитая задача о путях — задача о четырех черепахах. На ее примере мы видим, что иногда простые идеи позволяют избежать применения несравненно более сложных методов математического анализа. Задача об искусном землемере Рэнсоме возвращает нас на плоскость и знакомит с такими главами евклидовой геометрии, как теория разрезаний и разбиений. Задачи на разбиение земельных участков относятся к так называемой комбинаторной геометрии плоскости. Задача мисс Евклид о разрезании куба принадлежит к комбинаторной геометрии пространства.

Задача о ковровом покрытии для кольцевого коридора и ее трехмерный аналог — задача о просверленной насквозь сфере — могут служить прекрасными примерами того, как некая величина, которая, казалось бы, должна изменяться в зависимости от значений других параметров, в действительности принимает лишь одно значение. Кто мог бы ожидать, что при просверливании в сфере сквозного цилиндрического канала заданной длины объем оставшейся части сферы при постоянной длине канала не зависит ни от радиуса сферы, ни от диаметра канала? Впервые столкнувшись с теоремой о таком удивительном постоянстве, математик выразит свое изумление и почти заведомо скажет: «Красивый результат!»

Что именно имеют в виду математики, называя теорему или формулу красивой, точно не известно. Красота в их понимании каким-то образом связана с неожиданной простотой, но сколь ни трудно объяснить, в чем состоит эстетическая привлекательность математического утверждения, все математики умеют отличать красивую теорему или изящное доказательство с такой же легкостью, с какой мы отличаем красавицу от дурнушки. Геометрия, изучающая объекты, доступные не только мысленному взору, но и непосредственному созерцанию, необычайно богата красивыми теоремами и доказательствами. Некоторые из них вы встретите в этой главе.

Как разделить головку сыра

Кухня в ресторане «У Джо» оставляет желать лучшего, зато выбор сыров у Джо отменный.

Цилиндрическая головка сыра таит в себе немало интересных задач на разрезание. Проведя лишь 1 прямолинейный разрез, ее нетрудно разделить на 2 одинаковые части.

Два прямолинейных разреза позволяют разделить головку сыра на 4 одинаковые части, а 3 прямолинейных разреза — на 6 равных частей.

Однажды официантка Рози попросила Джо разрезать сыр на 8 одинаковых частей.

Джо. Хорошо, Рози. Сделать это совсем нетрудно. Я разделю сыр на 8 одинаковых частей четырьмя прямолинейными разрезами.

Подавая сыр на стол, Рози вдруг поняла, что Джо мог действовать и более экономно: чтобы разделить головку на 8 одинаковых частей, достаточно провести лишь 3 прямолинейных разреза.

Как это сделать?

Три разреза?

Рози пришло в голову, что цилиндрическая головка сыра представляет собой не плоскую фигуру, а тело, которое можно разрезать по горизонтальной плоскости, проходящей через его центр. На рис. 1 показано, как тремя разрезами разделить сыр на 8 одинаковых порций. В этом решении предполагается, что все три разреза проведены одновременно. Если же разрезы проводить последовательно, один за другим, и перед каждым разрезом переставлять куски сыра наиболее удобным образом, то тремя разрезами сыр можно разрезать по-другому (так, как он разрезан^на подносе в руках Рози): для этого один из двух кусков, получившихся после первого разреза, нужно поставить на другой, провести еще один разрез, взять одну из «двухэтажных» половин, поставить на другую и провести третий разрез. После третьего разреза головка сыра окажется разделенной на 8 одинаковых порций.

Решение Рози столь просто, что кажется почти травиальным, и тем не менее оно может служить хорошим введением в серию важных задач на разрезание, теория которых связана с исчислением конечных разностей, а многие доказательства проводятся методом математической индукции. Конечные разности служат мощным средством получения формул общих членов числовых последовательностей. Интерес к числовом последовательностям неуклонно возрастает, что объясняется по крайней мере двумя причинами: во-первых, тем, что числовые последовательности встречаются во многих числовых задачах, и, во-вторых, быстротой, с которой ЭВМ позволяют производить над числовыми последовательностями любые действия.

Изобретенный Рози первый метод разрезания сыра (без перекладывания кусков) состоит в проведении прямолинейных или, лучше сказать, плоских разрезу проходящих через центр верхнего основания готовки сыра, плоского, как у круглого пирога. Выясним, какие числовые последовательности может порождать разрезание верхней поверхности сыра прямыми, пересекающимися в центре (ясно, что n одновременно проведенных разрезов позволяют разделить сыр не более чем на 2n кусков).

Можно ли считать, что 2n — максимальное число частей, на которые n прямых, проходящих через одну точку, могут разделить любую плоскую фигуру, ограниченную простой замкнутой кривой? Нет: нетрудно построить невыпуклую фигуру (например, такую, как на рис. 2), которую одной прямой можно разделить на значительно большее число частей. А можно ли построить фигуру, которую одной прямой можно было бы разделить на любое конечное число конгруэнтных частей? Если да, то какими свойствами должен обладать периметр фигуры, чтобы одной прямой от нее можно было отсечь п конгруэнтных частей?

Задача о разрезании пирога или сыра становится еще более интересной, когда линии разреза не пересекаются в одной точке. Нетрудно видеть, что начиная си = 3 при таком способе разрезания исходный круг будет распадаться более чем на 2n частей (пока нас не интересует, будут ли эти части конгруэнтными или равновеликими). На рис. 3 показано, каким образом достигается максимальное число частей при числе разрезов n, равном 1, 2, 3 и 4 (круг делится соответственно на 2, 4, 7 и 11 частей).

Вы читаете Есть идея!
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату