Вам пришла в голову мысль перейти от плоских кривых к пространственным? Оказывается, помимо двух традиционных форм мечей, вкладывающихся в ножны, тем же свойством обладают только мечи, выкованные в форме винтовой линии.
Винтовая линия играет важную роль в современной науке, — особенно в биологии и физике элементарных частиц. Молекулы ДНК имеют форму винтовой линии. В отличие от своих одно- и двумерных двоюродных сестер — прямых и окружностей — винтовая линия обладает «закрученностью», то есть может быть правой и левой. Прямая и окружность неотличимы от своих зеркальных отражений, но отличить винтовую линию от ее зеркального отражения не составляет ни малейшего труда. В зеркале винтовая линия, по выражению Алисы из Зазеркалья (Льюис Кэрролл), «идет наоборот».
Существует множество примеров винтовых линий в природе и в повседневной жизни. Винтовая линия по традиции считается правой, если она закручивается по часовой стрелке по мере удаления от вас. Винты, болты и гайки, как правило, имеют правую нарезку. Винтовые лестницы, стебли сахарного тростника, пружины, волокна в канатах и кабелях и стружки могут закручиваться как вправо, так и влево.
К числу примеров встречающихся в природе винтовых линий относятся рога многих животных, раковины морских моллюсков, гигантский зуб нарвала, ушная раковина человека, пуповина. В мире растений винтовая линия встречается в строении стеблей, побегов, усиков, семян, цветов, шишек, листьев и т. д. Взбираясь на вершину дерева или спускаясь с нее, белка описывает винтовую линию. Вылетая из пещеры, летучие мыши также движутся по винтовым линиям. Винтовые линии, навитые на конус, можно без труда обнаружить в таких атмосферных явлениях, как вихри или смерчи. Вода, стекая в раковине, также закручивается в воронку, сотканную из винтовых линий. Много других примеров винтовых линий вы найдете в книге М. Гарднера «Этот правый, левый мир»[3].
Правильная винтовая линия — это кривая, навитая на круговой цилиндр под постоянным углом к образующим (напомним, что образующими называются прямые на поверхности цилиндра, параллельные его оси). Пусть ? — угол, под которым винтовая линия пересекает образующие цилиндра. При ? = 0° винтовая линия, как нетрудно видеть, вырождается в прямую, а при ? = 90° — в окружность.
Аналитически в этом можно удостовериться, если записать параметрические уравнения винтовой линии и проварьировать входящий в них угол ? от 0° до 90°. И прямая, и окружность — предельные формы более общей пространственной кривой, получившей название винтовой линии. Правильная винтовая линия — единственная пространственная кривая постоянной кривизны. Этим и объясняется, почему мечи, вкладывающиеся в ножны, можно изготовить только в форме правильной винтовой линии (что выглядело бы несколько необычно) и двух ее предельных случаев — прямой и окружности.
Проекция винтовой линии на плоскость, перпендикулярную ее оси, имеет форму окружности. Спроецировав винтовую линию на плоскость, параллельную оси, мы получим синусоиду. В этом нетрудно убедиться, если снова воспользоваться параметрическими уравнениями кривой. Многие свойства синусоиды можно изучать по ее близкой родственнице — винтовой линии.
В этой связи мы хотим рассказать одну забавную историю-задачу, допускающую (при надлежащем подходе) очень простое решение. Внутри цилиндрической башни высотой 100 м ходит лифт. Снаружи башни имеется винтовая лестница, образующая с вертикалью постоянный угол ? = 60°. Диаметр башни 13 м.
Однажды мистер и миссис Пицца поднялись на лифте на смотровую площадку, расположенную на вершине башни. Их сын Томато Пицца предпочел идти наверх пешком. Когда он добрался до смотровой площадки, вид у него был не блестящий.
— Не мудрено, что ты устал, сынок, — заметил мистер Пицца. — Ведь тебе пришлось проделать вчетверо больший путь, чем нам, и все пешком.
— Ты ошибаешься, папа, — ответил Том. — Я прошел лишь
Кто прав: Том или его отец?
Кое-кто склонен думать, будто для того, чтобы вычислить длину винтовой лестницы, необходимо знать диаметр башни. В действительности информация о диаметре башни совершенно лишняя!
Дело в том, что винтовую лестницу можно развернуть в гипотенузу прямоугольного треугольника с острым углом 30° и высотой 100 м, а гипотенуза такого треугольника вдвое больше высоты (катета, лежащего против угла 30°), Следовательно, прав был Том.
Убедиться в этом вы можете, развернув какую-нибудь картонную трубку. Возможно, исход эксперимента несколько удивит вас: вы увидите, что длина шва (винтовой линии, как бы навитой на трубку) не зависит от диаметра цилиндра, в который скручен прямоугольный треугольник.
Пари на полюсе
Знаменитый игрок Дэн, по прозвищу Ставлю Доллар, сидел в баре со своим другом Диком, по профессии пилотом.
Дик погрузился в размышления.
Дик принял пари и проиграл. Почему?
Предположим, что самолет стартовал из точки, расположенной на параллели А, отстоящей на расстояние 116 км от Южного полюса, и пролетел к югу 100 км.
Пролетев 100 км на восток, он совершит полный оборот вокруг Южного полюса. Пролетев затем 100 км на север, он непременно вернется в исходную точку.