традиционных ребусов, успевших изрядно состариться.

Пиктограммы, передающие образно смысл слов, давно стали неотъемлемой частью современной рекламы и плаката. Шрифты и надписи несут добавочную смысловую нагрузку, «рисуя» то, о чем должен говорить зрителю плакат (рис. 2). Художники нередко используют этот прием при создании обложки. Пиктограммы находят также широкое применение в дорожных знаках, придавая им большую выразительность.

Британский плакат о вреде курения.

«Сумасшедшие» предложения

Проф. Слог. Следующее задание, дорогая Мари, посложнее. Вы должны сказать мне, что замечательного вам удастся заметить в трех надписях, которые я вам покажу. За каждую отгадку вы получаете приз в 20 долларов.

Проф. Слог. Вот первая надпись. Прочитайте ее внимательно и, пожалуйста, оставьте в покое мои уши. Не щекочите их перышком!

Мари. Не могу! Вы так умны и хороши собой, что я влюбилась в вас по уши.

Проф. Слог. Никакие объяснения в любви не помогут вам получить приз.

Мари. Я все равно получу его, так как справилась с заданием. Первая надпись палиндром, как и мое имя, она читается одинаково в обе стороны.

Проф. Слог. Очень хорошо, дорогая Мари. А что вы скажете об этой надписи? [6]

Мари. Позвольте взглянуть. Так! Это — почти палиндром, но не совсем. Минуточку! Поняла! Эта надпись читается одинаково в прямом и в перевернутом (вверх ногами или, если угодно, вниз головой) положении.

Проф. Слог. Вы снова правы, Мари! Переходим к последнему заданию.

Мари. Я заметила закономерность. Каждое слово в этой надписи на 1 букву длиннее предыдущего.

Проф. Слог. Великолепно! Вот еще 20 долларов, которые вы выиграли. Что вы собираетесь делать с этими деньгами?

Мари. Приглашу вас сегодня поужинать со мной, а затем покажу вам свою коллекцию словарей.

Проф. Слог. Согласен. До скорой встречи, Мари! А теперь, дорогие телезрители, пока наш следующий гость еще не пришел, мы воспользуемся свободной минутой, чтобы предложить вашему вниманию еще одну словесную задачку.

Проф. Слог. Какое слово из 5 букв все выпускники Гарвардского университета произносят плохо?

Еще немного о палиндромах

Тысячи замечательных палиндромов известны на всех основных языках. Придумать палиндром не так трудно, попробуйте и вы убедитесь в этом сами. Вот несколько известных примеров палиндромов на русском языке: «Кирилл лирик», «Ты сыт?», «Аргентина манит негра», «Я не реву — уверен я».

В классических палиндромах единицей служат буквы. Но можно составить и «крупноблочные» палиндромы, в которых единицами будут целые слова. Два замечательных примера таких палиндромов принадлежат Дж. А. Линдону:

1. «You can cage a swallow, can't you, but you can't swallow a cage, can you?» («Вы можете посадить ласточку в клетку, но проглотить клетку вы не можете, не так ли?»)

2. «Girl bathing on Bikini, eyeing boy, finds boy eyeing bikini on bathing girl» («Девушка, купающаяся на острове Бикини и украдкой поглядывающая на молодого человека, видит молодого человека, не отрывающего глаз от бикини на купающейся девушке»).

Существуют поэмы, которые читаются одинаково от начала к концу и от конца к началу либо по строкам, либо целиком.

Палиндромы — аналоги того, что математики называют двусторонней, или билатеральной, симметрией. Тела людей и многих животных обладают двусторонней симметрией. Многие творения человеческих рук также обладают двусторонней симметрией, например кресла, кофейные чашки и тысячи других предметов. Любые фигуры и тела, обладающие двусторонней симметрией, при отражении в зеркале переходят в себя. В этом и проявляется аналогия между билатеральной и палиндромной симметрией, при которой последовательность символов остается неизменной, если очередность символов изменить на противоположную.

Говоря о символах, мы имеем в виду не только буквы, но и цифры. Числовой палиндром — это число, которое читается одинаково слева направо и справа налево. Одна знаменитая гипотеза в теории чисел так и называется — «гипотеза о палиндромах». Возьмем любое число в десятичной системе счисления, вывернем его «наизнанку», записав от конца к началу, и сложим оба числа. То же самое проделаем с суммой и будем повторять всю процедуру до тех пор, пока не получим палиндром. Например, число 68 порождает палиндром в 3 шага:

Гипотеза о палиндромах состоит в том, что независимо от того, какое число выбрано, после конечного числа шагов вы непременно получите палиндром.

Никто не знает, верна ли эта гипотеза. Доказано, что для двоичной системы и всех систем счисления с основанием, равным любой степени двойки, эта гипотеза не верна. Для систем счисления с другими основаниями доказать гипотезу о палиндромах пока не удалось.

Наименьшее десятичное число, которое может служить контрпримером, опровергающим гипотезу о палиндромах, равно, по-видимому, 196.

Математики проделали на ЭВМ сотни тысяч шагов, но получить палиндром так и не удалось, хотя никем не доказано, что он никогда не появится.

Математики исследовали также простые числа-палиндромы (которые делятся на 1 и на самих себя). Многие считают, что существует бесконечно много простых чисел-палиндромов, но эта гипотеза также пока не доказана. Высказывалось предположение и о том, что существует бесконечно много таких пар чисел- палиндромов, как, например, 30103 и 30203, в которых средние цифры отличаются на 1, а все остальные цифры совпадают.

Простое число-палиндром должно иметь нечетное число знаков: каждое палиндромное число с четным числом знаков кратно 11 и, следовательно, не может быть простым. Можете ли вы доказать, что палиндромное число с четным числом знаков всегда делится на 11? (Указание: число делится на 11, если разность между суммой цифр, стоящих в разрядах с четными номерами, и суммой цифр, стоящих в разрядах с нечетными номерами, кратна 11.)

Много палиндромов среди квадратов, например 11 ? 11 = 121. Квадраты оказываются палиндромами гораздо чаще, чем выбранные наугад целые числа. То же можно сказать и о кубах. Более того, если куб —

Вы читаете Есть идея!
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату