палиндром, то можно почти с уверенностью сказать, что и кубический корень из него также будет палиндромом (например, 11 ? 11 ? 11 = 1331). Поиск палиндромов среди четвертых степеней, проведенный с помощью ЭВМ, пока не дал ни одного палиндрома, корень четвертой степени из которого не был бы также палиндромом. Поиск палиндромов среди пятых степеней пока оказался безуспешным. Высказана гипотеза, согласно которой не существует чисел-палиндромов вида
Надпись на плакате «NOW NO SWIMS ON MON» («Никто не плавает теперь по понедельникам») — самый длинный из известных текстов, обладающих симметрией относительно поворота на 180°. Существует довольно много примеров отдельных слов, обладающих такой симметрией либо в рукописном, либо в печатном виде. На рис. 3 вы видите некоторые из них.
Предложение «Я бы сам всех макак удивил» можно было бы сравнить со снежным комом: каждое следующее слово на одну букву длиннее предыдущего, слова увеличиваются в размерах, как снежный ком, катящиеся по склону. Существуют и более длинные предложения такого типа. Удается ли вам придумать несколько таких предложений?
Ответ на последний вопрос проф. Слога: все выпускники Гарвардского университета произносят «плохо» слово «плохо» из 5 букв. Нетрудно придумать и другие вопросы того же типа.
Мистер Неку Рите
Следующим гостем телепередачи «Состязание любителей слова» был президент сигаретной компании из Хакеттстауна (штат Нью-Джерси) мистер Неку Рите. Почему проф. Слогу так понравилось имя нового гостя?
Если по-другому разбить имя и фамилию гостя, то получится «Не курите». Для президента сигаретной компании имя, что и говорить, весьма подходящее!
Хотя наш рассказ-загадка в картинках может показаться тривиальным, он показывает, что пробел как элемент алфавита имеет первостепенное значение для правильного понимания предложений. Пробелы между словами играют такую же роль, как скобки, пробелы и т. п. в математических выражениях. Смысл математического выражения нередко можно сильно изменить, «передвинув» одну-единственную скобку подобно тому, как сдвиг пробела почти до неузнаваемости изменил привычный призыв «НЕ КУРИТЕ».
Значения многих слов изменяются, если ввести пробел. Например, «штукатурка» превратится в словосочетание «штука турка», а «прохвост» — в безобидное «про хвост».
В старые времена, когда основным видом транспорта была лошадь, на улице одного американского городка над коновязью красовалась вывеска:
Д ЛЯЛОШ АДЕЙИМ УЛОВ
Можете ли вы, расставив по-другому пробелы, расшифровать таинственную надпись?
Близка по духу и другая игра в слова, известная еще нашим дедушкам и бабушкам: в предложении скрыто какое-то имя или географическое название, которое требуется найти. Например, название какого штата таится в следующем предложении: «Едва смолкли голоса, как кто-то восторженно воскликнул: «Ай, да хор! Молодцы!»
Нетрудно видеть, что подчеркнутые буквы образуют название американского штата Айдахо. Попробуйте теперь обнаружить название одной из частей света в предложении, взятом, — должно быть, из какого-то фантастического романа: «За стеклом иллюминатора в резком свете прожектора, слезившем глаза, зияла пасть глубоководного чудовища».
Столь же легко замаскировать и математические термины. Например, название хорошо известного всем геометрического термина спрятано в предложении: «Изящный кувшин был выкован из меди, а на ручке мастер выгравировал свои инициалы».
Существуют и всевозможные усложненные варианты. Например, одно предложение может быть скрыто в другом, вполне осмысленном. Для проявления «скрытого изображения» часть букв необходимо зачеркнуть. Особого искусства требует составление тройной фразы с «двойным дном», в которой осмысленные предложения образуют все буквы, зачеркнутые буквы и буквы, оставшиеся после зачеркивания. Приведем арифметический аналог такой тройной фразы: 15 + 11 = 26. Последние цифры порождают равенство 5 + 1 = 6, после их вычеркивания остается равенство 1 + 1 = 2. Возможно, вам удастся придумать более сложные примеры.
Прямые люди
Мистер Рите молча попыхивал сигарой, пока его время не истекло.
Задача проф. Слога решается сразу, стоит лишь догадаться, что каждое имя можно разбить на две части, а из «осколков», комбинируя их в других сочетаниях, составить те же четыре имя.
Идея разбиения на части прямыми встречается и во многих других головоломках. Обычно речь идет о том, чтобы несколькими прямыми разделить ту или иную картинку на части, каждая из которых содержала бы лишь одну деталь. Типичная головоломка такого рода изображена на рис.
Интересные варианты той же идеи возникают, если вместо кружков взять числа. Требуется разделить квадрат прямыми на части так, чтобы в каждой части числа обладали каким-нибудь общим отличительным свойством. Свое искусство в решении задач этого типа вы можете испытать на следующей головоломке (рис.
Невразумительное объявление