теории и законам сохранения. Сильное волнение, вызванное результатами Шэнкланда, и вспыхнувшие вновь дискуссии о применимости ЗС в микромире, кажутся сейчас объяснимыми только верой в сказочный закон, согласно которому третья попытка всегда успешна. Опыты Шэнкланда были очень скоро опровергнуты и забыты. Тогда же исчезли сомнения в ЗС.

Точку в этой истории Бор поставил в заметке, которая сопровождала публикацию экспериментов, опровергающих Шэнкланда: «основания для серьезных сомнений в строгой справедливости законов сохранения при испускании р-лучей атомным ядром сейчас в основном устранены» [119]. В словах «серьезных» и «в основном» можно усмотреть горечь по поводу разрыва родительских уз, связывающих Бора с гипотезой несохранения. Описывая историю нейтрино в 1957 г., Паули не без некоторого недоумения отметил: «Впрочем, справедливость закона сохранения энергии при р-распаде и существование нейтрино он [Бор] признал полностью лишь в 1936 г., когда уже была успешно развита теория Ферми» [Там же, с. 394].

А теперь рассмотрим внимательнее ход интересующих нас событий и попытаемся понять мотивы их участников.

4.2. Гипотеза несохранения и мотивы ее сторонников

а) В ожидании релятивистской теории квант. Первые сомнения Бора в ЗС, порожденные его антипатией к эйнштейновским квантам света, нашли мало сочувствия не только за пределами его группы, но и среди его сотрудников. Не разделял эти сомнения даже Слетер, на основе идеи которого (о виртуальном поле излучения) и в соавторстве с которым Бор в 1924 г. попытался реализовать «закон несохранения энергии» [202, с.138]. При этом следует сказать, что сомнения в идее световых квантов были довольно широко распространены, и не только среди физиков старшего поколения. Например, Ландау в 1927 г., рассматривая квантование электромагнитного излучения, сказал: «Введение световых квантов, однако, произвольно и не является необходимым» [213, с. 21] (в то же время Бронштейн, как видно по его первым работам, был на фотонных позициях). Квантовый парадокс (как называли тогда проблему совмещения дискретного и непрерывного описаний) скорее вдохновлял теоретиков, находящихся на подъеме. Сама сила парадокса предвещала такое его разрешение в теории, которое могло превзойти разрешение эфирных парадоксов теорией относительности. Но отказ от ЗС при отсутствии нового принципа, способного заменить его, для большинства теоретиков не имел тогда серьезных оснований.

В 1929 г., когда Бор вернулся к своей идее, ситуация существенно изменилась. В рамки ЗС не укладывался экспериментальный факт (непрерывность Р-спектра). И, что еще важнее, теория благословляла принципиально новое поведение Природы в соответствующей области, поведение, не обязанное подчиняться построенной и успешно действовавшей квантовой механике. Благословение это предшествовало надежному установлению экспериментального факта и от того становилось еще более убедительным. Ведь до открытия нейтрона (1932) считалось несомненным, что в состав ядра входят электроны: об этом «непосредственно» свидетельствовали сами Р-лучи. А появившийся в 1927 г. принцип неопределенности сделал ясным, что к внутриядерным электронам неприменима нерелятивистская теория, какой была квантовая механика: подставив размер ядра и массу электрона в соотношение AxAp~h, получим релятивистские скорости внутриядерных электронов, что выводит соответствующие явления в область релятивизма.

Для понимания сторонников боровской гипотезы важно учитывать общее состояние фундаментальной физики на рубеже 20—30-х годов. Это было время ожидания «релятивистской теории квант» — теории, в которой действовали бы наравне две мировые константы с и h. Дираковское уравнение для электрона (1928) считалось, конечно, выдающимся результатом, но неполноценным из-за отрицательных состояний. Кроме того, от подлинной ch-теории ожидалось гораздо большее, чем давало уравнение Дирака. Синтез релятивистских и квантовых идей в ch-теории казался чуть ли не последним важным событием в теоретической физике. Все ожидали, что ch-теория объяснит численное значение постоянной тонкой структуры а = e2/ch и — тем самым — атомизм заряда [81, с. 205]. Только немногие осознавали, что за построением ch-теории должно еще последовать построение cGh-теории и (на ее основе) космологии [21, 250], для большинства же слабость гравитационного взаимодействия и его неучастие в атомной физике было достаточной причиной, чтобы оставлять G вне поля зрения.

С конца 20-х годов физики, не успевшие еще вполне привыкнуть к радикальным переменам, связанным с квантовой механикой, были вместе с тем уверены, что грядущая ch-теория принесет с собой еще более глубокую перестройку [252, с. 72]. Эта уверенность питалась несколькими причинами.

Во-первых, тогда еще не выдохлась программа единой теории поля [128]. Хотя к эйнштейновскому идеалу такой теории относились в основном скептически, единое представление релятивизма, квантов, гравитации и электромагнетизма казалось возможным в обозримом будущем. А такая возможность — даже при малой ее вероятности — окрыляла теоретическую мысль.

Другим источником теоретического радикализма были глубокие трудности, не устранимые тогдашними средствами, прежде всего — бесконечности теории поля.

И, наконец, третий, пожалуй, самый важный источник нонконсерватизма: на рубеже 20—30-х годов обнаружились ограничения понятийного аппарата, рожденные совместным учетом релятивизма и «квантизма» (индивидуальные неопределенности, бессмысленность понятия «поле в точке» и т. д. [158, 163]). К этому добавлялись и «фундаментальные дефекты» первой квантово-релятивистской теории — теории Дирака (дефекты эти превратились в триумф только после открытия позитрона в 1932 г.).

Замечательные реальные достижения квантовой механики внушали теоретикам уверенность, что физика находится на правильном пути, но перечисленные обстоятельства убеждали их в том, что до конца пути еще далеко. В настроении теоретиков на рубеже 20—30-х годов действовала инерция революционности, оставшейся от эпохи создания теории относительности и квантовой механики. Физики успели привыкнуть к темпу понятийной перестройки предыдущих десятилетий. Поэтому, например, в то время смогла появиться такая радикальная идея, как квантование пространства-времени. Поэтому и радикальность гипотезы несохранения по тем временам воспринималась не так уж остро.

б) Нейтринная альтернатива. В революционном настрое теоретиков кроется причина преобладавшего вначале отрицательного отношения к нейтринной гипотезе Паули. Эта гипотеза казалась слишком простым решением ядерной проблемы, слишком дешевым.

Легко понять, почему нейтринная гипотеза могла казаться непривлекательной в самом начале 30-х годов. Ведь тогда было хорошо известно, что вещество (или материя, как тогда чаще выражались) построено всего из двух элементарных частиц — электрона и протона, существование которых надежно установлено и проявляется в огромном количестве фактов. Обе частицы имеют электрический заряд. Незаряженный фотон не стоял тогда в одном ряду с этими материальными частицами не только в силу его молодости и традиционного противопоставления света и материи, но и по причине, физически более существенной,— свет характеризовал только взаимодействие и не выполнял функций строительного материала. Добавление к двум элементарным частицам материи еще одной, не обладающей электрическим зарядом и почти не обладающей массой (короче, неуловимой частицы), казалось пресловутым умножением сущностей, искусственной гипотезой для спасения старого закона природы, нуждающегося в замене. Не случайно Паули целых три года воздерживался от публикации своей идеи и обсуждал ее только устно. Осенью 1933 г., накануне перелома в физическом общественном мнении, Бронштейн писал [77]: «Однако до последнего времени допущение 'нейтрино' казалось признаком столь дурного вкуса, что теоретики, почти не колеблясь, принимали альтернативу, предложенную Бором», т. е. гипотезу несохранения энергии (ГН).

Только широкое видение науки позволяло говорить тогда об исторически изменяемом числе элементарных сущностей, из которых построена материя. Как писал Бронштейн в 1930 г.: «Мир оказался еще более простым, чем думали древние греки, по мнению которых все тела природы состояли из четырех элементов — земли, воды, воздуха и огня. Протоны и электроны в настоящее время считаются (надолго

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату