ли?) последними элементами, образующими материальные тела» [63, с. 58]. В 1930 г. вряд ли кто из физиков мог поверить, что так ненадолго.

До экспериментального открытия в 1932 г. сразу двух новых частиц (одна из которых к тому же электрически не заряжена) наиболее общие методологические установки тогдашней физики были против нейтрино. За нее мог быть только теоретический эмпиризм, если можно так выразиться,— конкретные, проблемы и факты ядерной физики: азотная катастрофа, верхняя граница Р-спектра и т. п. Спасение ЗС также не выглядело целью самого высокого теоретического уровня. Ведь, несмотря на все значения этого закона для физики и его философское звучание, с точки зрения развитой динамической теории ЗС лишь ее следствие, один из интегралов уравнений движения.

С 1932 года — «года чудес» для ядерной физики — на нейтринную чашу весов добавляются, а с противоположной убираются все новые гири. Открытие нейтрона привело (хотя не так легко и быстро, как может показаться на первый взгляд) к тому, что внутриядерных электронов попросту не стало; утверждалось представление о том, что Р-электроны рождаются. В результате начала слабеть важнейшая теоретическая опора ГН — обнаружилось, что проблемы построения полной ch-теории и теории ядерных явлений в большой степени независимы и что есть существенная область ядерной физики, в которой можно опираться па построенную и успешно действующую нерелятивистскую квантовую механику. И все же в проекте программы Ленинградской ядерной конференции, составленном в декабре 1932 г., был объединенный пункт — «теория структуры ядра и вопросы релятивистской квантовой механики» [287]. И на самой конференции (сентябрь 1933 г.) нейтрино оказалось не в центре дискуссий: в пространном отчете о конференции, написанном одним из самых активных ее советских участников — Иваненко, о нейтрино нет ни слова [188].

Переломным моментом стал конец 1933 г. В октябре на Сольвеевском конгрессе было сообщено о новых экспериментальных данных по верхней границе Р-спектра, и нейтринная гипотеза стала привлекать большее внимание. Паули, наконец, решился ее опубликовать, а Бор формулировал свою позицию уже в более осторожных выражениях. В самом конце 1933 г. Ферми на основе нейтринной гипотезы построил теорию Р-распада и получил важное следствие из нее — форму Р-спектра, из сравнения которой с экспериментом следовало, что масса нейтрино близка к нулю или равна ему.

Однако теория Ферми стала решающим доводом в пользу нейтрино и соответственно против ГН не для всех. Главная причина состояла в том, что эта теория была аргументом не такого методологического уровня, как соображения в пользу ГН. Теория Ферми не привлекала новых принципиальных идей и очень мало походила на ожидаемую теорию «следующего поколения» после квантовой механики и тогдашней квантовой электродинамики. Все ее совершенство сводилось к внешнему оправданию, а подлинно глубокие проблемы, как тогда считалось, в ней просто удалось запрятать в новую физическую константу, характеризующую Р-взаимодействие и лишь ожидающую сведения к фундаментальным физическим постоянным [148].

б) Несохранение энергии, ОТО, космология и астрофизика. Для тех, кому было недостаточно новых экспериментальных данных и теории Ферми, важным оказалось замечание Ландау о несовместимости ГН и общей теории относительности — аргумент уже вполне фундаментальный. Этот аргумент впервые прозвучал во время теоретических дискуссий в УФТИ в декабре 1932 г. В письме Бору от 31.12.1932 г. Гамов сообщал:

«В начале декабря я был в Харьковском институте, чтобы посмотреть на быстрые протоны, которые они там получили. Эренфест, Ландау и некоторые другие теоретики также были там, поэтому мы организовали маленькую конференцию. Обсуждали многие вопросы и выяснили одну вещь, которая, полагаю, будет особенно интересна Вам. Похоже на то, что несохранение энергии находится в противоречии с гравитационными уравнениями для пустого пространства. Если гравитационные уравнения справедливы для области В, то отсюда следует, что полная масса в области А (где законы нам неизвестны) должна быть постоянной [на рисунке в письме область А изображена малой частью области В]. Если в области А мы имеем, например, ядро RaE и скачком меняем его полную массу в трансмутационном процессе, мы не можем больше пользоваться обычными гравитационными уравнениями в области В. Каким образом мы должны изменить эти уравнения, неясно, но замена должна быть сделана. Что Вы думаете об этом?» [247, с. 568]. (Озадаченность Гамова легко понять, если учесть, что боровская гипотеза о несохранении, к которой он относился очень сочувственно, была впервые опубликована в его работе 1930 г. [143]: публикация самого Бора появилась, напомним, в 1932 г.)

Эренфест был в Харькове с 14 декабря 1932 г. до 14 января 1933 г. [285, с. 152]. Этот же месяц провел в Харькове и Бронштейн [103], при обсуждении статьи которого [16] указанные соображения Ландау и появились [31, с. 196]. Статья Бронштейна прибыла в Харьков (в издаваемый здесь на иностранных языках журнал) на месяц раньше автора. В статье «О расширяющейся вселенной» пересеклись две фундаментальные темы: временная асимметрия космологии и релятивистская квантовая теория. А точка пересечения представляла собой попытку построить космологическую модель, реализующую гипотезу Бора о несохранении энергии. Бронштейн прекрасно знал ситуацию в релятивистской космологии и понимал возможности (и невозможности) ОТО, не включающей в себя квантовую теорию. Он считал, что космологическую проблему и в особенности проблему временной асимметрии нельзя решить, ограничиваясь только рамками ОТО (вопреки мнению Леметра), и что для этого необходима квантово- релятивистская теория. А значит, в соответствии с боровской гипотезой, надо учесть несохранение энергии, что Бронштейн и сделал эффективно, предполагая космологический член Л в уравнениях ОТО зависящим от времени.

Так возникла первая физическая «константа», зависимость которой 4от времени была увязана с расширением Вселенной[36]. В современной космологии, видящей свой фундамент в единой теории взаимодействий [201], также появляется космологическая константа, зависящая от возраста Вселенной (от ее температуры, меняющейся с возрастом). И так же как в модели Бронштейна, в нынешних построениях энергия может перекачиваться от «видимых» форм материи к «невидимому» Л-полю. Когда историк науки говорит о предвосхищении, это нередко производит впечатление натяжки — слишком сильно научная ситуация меняется со временем. Мы не станем употреблять этого слова. Но не забудем, что идеи, переданные научному сообществу, начинают жить собственной жизнью, легко забывая свое происхождение.

Вернемся теперь к статье Бронштейна. В добавлении к ней, датированном 13.1.1933 г. и возникшем в результате харьковских обсуждений с Эренфестом и Ландау (которых Бронштейн благодарит), замечание Ландау было опубликовано впервые:

« Ландау привлек мое внимание к тому факту, что выполнение гравитационных уравнений эйнштейновской теории для пустого пространства, окружающего материальное тело, несовместимо с несохранением массы этого тела. Это обстоятельство строго проверяется в случае решения Шварцшильда (сферическая симметрия); физически это связано с тем фактом, что эйнштейновские гравитационные уравнения допускают только поперечные гравитационные волны, но не продольные...».

Указанная несовместимость ГН с ОТО не разрушает бронштейновскую модель, но делает ее малопривлекательной: «То, что в моей работе эта трудность обходится, основано на использовании макроскопических уравнений вместо микроскопических; рождение излучательной энергии в ядрах звезд [подчиняющихся, как тогда считалось, квантово-релятивистской теории] трактуется как новая форма энергии, связанная с Л-полем, которая компенсирует боровское несохранение. Этот выход из указанного трудного положения кажется очень неприятным; никаких других в настоящее время не видно. Данный парадокс в действительности очень озадачивает, он характерен для трудностей, возникающих в связи с космологической проблемой» (об отношении Бронштейна к космологии см. гл. 5).

Напомним, что в ОТО масса сферически-симметричного источника в пустоте не может зависеть от времени и что поперечность электромагнитных волн связана с законом сохранения заряда. Как мы видим, у Бронштейна несовместимость ГН и ОТО описана гораздо определеннее, чем в письме Гамова (и в статьях [147, 148]). Это, впрочем, не удивительно; судя по публикациям, Гамов владел ОТО далеко не в той мере, как Бронштейн.

Суть соображений Ландау можно пояснить следующим образом. Согласно ОТО роль источника гравитационного поля — роль заряда — играет энергия (или соответствующая ей масса:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату