Нетрудно понять, что неопределенность контрдовода не меньше неопределенности исходного довода. Однако уже в исходном фигурирует необычная для физики генетическая связь объекта и наблюдателя, порожденного самим объектом. Такая связь составляет суть так называемого антропного принципа, который привлекает значительное внимание в современной космологии. Эта связь (хотя и в негативном смысле) впервые, по-видимому, обсуждалась в статье Бронштейна 1933 г. [21] и в его совместной с Ландау статье [22]. Соответствующее рассуждение воспроизведено в «Статистической физике» Ландау, Лифшица [219, с. 29] (и в последующих изданиях) и стало отправным пунктом для различных «антропных» формулировок [185,
192].
Отношение Бронштейна к космологической проблеме во многом определялось его отношением к фундаментальной физической теории, поскольку по его представлениям «космологическая теория должна увенчать здание физической теории вообще» [21, с. 29]. Общий взгляд на космологию Бронштейн излагал в 1933— 1935 гг., и максимализм этого взгляда естественно связать с характерным для тех лет ожиданием радикальных перемен в фундаментальной физике. В последующие годы его отношение к космологии стало, видимо, более уравновешенным. Однако идея глубинного родства микрофизики и космологии была укоренена в его сознании.
А теперь, в общих чертах охарактеризовав обстоятельства, в которых появилась последняя крупная работа Матвея Петровича Бронштейна, расскажем наконец о ее содержании.
«С точки зрения экспериментатора эффект спонтанного расщепления фотона мог бы представлять несравненно больший интерес, нежели рассеяние света светом. Проверка на опыте теоретических расчетов, относящихся к рассеянию света светом, в настоящее время практически невозможна, так как для этого потребовались бы чудовищные интенсивности в условиях полного исключения всякого добавочного рассеяния. Для того же чтобы наблюдать спонтанное расщепление фотона, если оно на самом деле происходит, необходимо лишь иметь в своем распоряжении достаточно большие промежутки времени: как бы ни была мала вероятность спонтанного расщепления в секунду, расщепление должно произойти, если только фотон путешествует в пустоте достаточно долгое время. В распоряжении астронома имеются фотоны, распространявшиеся в пустом пространстве в течение огромного промежутка времени (свет от внегалактических туманностей 20-й звездной величины, спектры которых еще могут быть сфотографированы с помощью стодюймового рефлектора, доходит до земного наблюдателя в течение 190 миллионов лет). Нельзя ли попытаться решить вопрос о спонтанном расщеплении фотонов с помощью астрономического наблюдения?» [35, с. 285].
Не так давно стали говорить о том, чтобы в качестве физической лаборатории использовать Вселенную (из-за физических и экономических ограничений на создание все более мощных ускорителей) [242]. Мы видим, что эта идея была хорошо знакома Бронштейну в 1937 г. Вернемся, однако, к его статье.
«Гальперн высказал гипотезу, согласно которой 'космическое красное смещение', исследованное Хабблом и Хьюмасоном, объясняется постепенным отщеплением небольших инфракрасных фотонов от фотона видимого света, идущего к земному наблюдателю от отдаленных небесных объектов. Эта точка зрения кажется весьма привлекательной, так как все существующие теории красного смещения (релятивистские модели 'расширяющейся вселенной', диффузия системы галактик по Милну) оказались бессильными объяснить наблюдаемое количественное значение 'коэффициента экспансии'. Гипотеза Гальперна дает, на первый взгляд, надежду на вычисление коэффициента экспансии системы галактик из констант атомной физики. Я думаю, однако, что гипотеза Гальперна неверна».
Это мнение Бронштейн обосновывает очень красивым рассуждением, обнаружив, что «с помощью специального принципа относительности можно вывести некоторые общие свойства интересующего нас явления, не делая никаких специальных предположений о природе механизма, приводящего к спонтанному расщеплению фотона».
Пусть фотон летит в пустоте вдоль оси х относительно некоторой системы отсчета (х, t), на диаграмме Минковского (х, ct) мировая линия фотона — АВ. И пусть другая система отсчета (х', t') движется относительно исходной со скоростью v тоже вдоль оси х. Если w — вероятность расщепления фотона в единицу времени, то вероятность того, что расщепление фотона произойдет между мировыми точками A и В, должна быть одинакова в обеих системах отсчета и равна
А поскольку по формуле эффекта Доплера
то
т. е. произведение wv — лоренц-инвариантная величина. Считать wv просто постоянной величиной, как показывает Бронштейн, нельзя в силу принципа неопределенности. Если же учитывать, что «'фотон', с которым имеет дело экспериментатор, является квантовым обобщением не классической неограниченной плоской волны, а волнового пакета, составленного из таких плоских волн и обладающего, следовательно, не вполне определенным значением количества движения», и ввести параметры реального «фотона» — спектральную ширину и неопределенность направления — с помощью неопределенности волнового вектора Avx, Avy, Avz, то получим, что
где f — некоторая функция, т. е. сильную зависимость вероятности расщепления фотона от частоты. В случае, если бы красное смещение объяснялось этим механизмом, величина смещения была бы существенно разной в разных частях спектра. А по астрономическим наблюдениям смещение одинаково для всех спектральных линий одного и того же объекта, что вполне соответствует доплеровской интерпретации, согласно которой смещение зависит только от скорости объекта:
Тем самым космологическая компонента гипотезы Гальперна была «убита».
Оставалась физическая компонента. И эту компоненту можно было проверить только прямым расчетом. Таких расчетов Бронштейн выполнил, собственно, два; это было связано с тем, что, как он отмечает, «несовершенство существующей теории позитрона делает исчерпывающее теоретическое решение вопроса крайне затруднительным». Первый расчет, в рамках «элементарной теории, не учитывающей взаимодействия электронов отрицательной энергии друг с другом», привел к возможности спонтанного распада фотона на три части. Однако помимо физически неполной формулировки задачи получившееся в результате выражение вероятности нелегко осмыслить физически. Второй расчет проведен уже с учетом поляризации вакуума и дал нулевую вероятность спонтанного расщепления фотона (при тогдашнем состоянии квантовой электродинамики такой расчет был трудной задачей). Так что предположение Гальперна и Гайтлера было опровергнуто окончательно.
Результат, полученный на основе общего физического принципа — специального принципа относительности,— согласовывался с прямым квантово-электро-динамическим расчетом. Это согласие было существенно и для самой физической теории, потому что, как писал Бронштейн: «В настоящее время еще