отсутствие стабильности гироскопов и масса более мелких факторов.
Существовала только одна контрмера, к которой мы могли прибегнуть. Все время горения – то есть на том участке траектории, где ракета подчинялась управлению, – ее было необходимо контролировать лучом радара. Такой способ управления давно использовался для слепой посадки самолетов, но в нашем случае он должен был обладать особой чувствительностью, не рассеиваться по мере того, как ракета удалялась от передатчика. Ракете предстояло строго выдерживать свою «линию». При малейшем отклонении от нее она должна тут же возвращаться на курс. Чтобы противостоять помехам союзников, мы должны были работать на дециметровых, а позже и на сантиметровых волнах, используя минимум оборудования, как наземного, так и в самой ракете.
Фирмы, занимавшие ведущие позиции в этой области, трудились над этой проблемой далеко не один год, но успехов так и не добились. Они постоянно назначали даты поставки техники, но не соблюдали их. Я не знаю, чем объяснялись эти задержки – то ли нашим низким статусом приоритетности, то ли заботами по выпуску обыкновенных радаров, то ли отсутствием стимулов по отношению к нашим скромным заказам, но я видел, что нас постоянно подводят. Совещание за совещанием не приносили результатов. Я не мог понять, что происходит. Ведь то, что требовалось нам, конечно же могло принести пользу и другим работам в области создания радаров. Наконец я пришел к выводу, что есть только один путь выхода из этой ситуации – попытаться добиться, чтобы заказ на нашу аппаратуру был включен в один из самых важных государственных планов создания вооружений. В радарную программу. И в конечном итоге я этого добился. Но я переоценил влияние армии на эту программу. Во главе ее стоял тот самый человек, который уже занимался нашей аппаратурой. Проще говоря, мы остались на том же месте. Лишь ближе к концу войны мы обзавелись собственной оригинальной техникой. Она представляла авиационный радар, который мы усовершенствовали.
Но и он не помог нам избавиться от проблем. Нам не удалось сократить разброс по горизонтали «А-4», чтобы он не превышал 2,5 километра. Конечно, с помощью этой техники результаты были куда лучше, но они ни в коем случае не соответствовали тому уровню, которого мы могли добиться, если бы наш проект был реализован вовремя.
Ровно два года назад, в июне 1941 года, Штейнхоф попросил меня стать свидетелем испытательного полета ракеты, которую вел радар, усовершенствованный его отделом. Военно-воздушные силы предоставили нам два самолета, чтобы испытать оборудование в полете. Весной 1940 года мы поставили технику полностью автоматизированного пилотирования, работавшую на частоте 50 мегагерц; трехкиловаттный передатчик располагался в северной части острова. Центральный луч передатчика был направлен на северо-восток, к датскому острову Борнхольм. Штейнхоф придерживался мнения, что самолет, который преодолеет 145 километров до Борнхольма в автоматическом режиме, достигнет намеченной точки на берегу острова с отклонением всего 18 метров. Предельное расстояние действия передатчика достигало 200 километров.
Полный радости от грядущей перспективы, я вместе с фон Брауном и доктором Штейнхофом предпринял этот полет над Балтикой. Как только курс самолета совместился с направлением ведущего радарного луча, Штейнхоф оставил сиденье пилота и подошел поговорить с нами. Машина, летевшая в автоматическом режиме, шла строго по курсу, очень низко над водой. Штейнхоф упомянул, что мы увидим на берегу типичный маленький домик с красной крышей – ту точку на побережье Борнхольма, над которой пройдет полет, руководимый лучом радара. Через сорок пять минут мы увидели, как из тумана выплывает берег Борнхольма, и вскоре пролетели над тем самым маленьким домиком. Контрольная команда на Борнхольме подтвердила точность нашего появления.
Сегодня, встретившись с доктором Штейнхофом в его кабинете, я первым делом осведомился о последних исследованиях профессора Вивега из Дармштадта. Он занимался электростатическими зарядами на корпусе ракеты, когда та входит в земную атмосферу. Доктор Штейнхоф отвечал на мои вопросы в своей привычной осторожной манере, избегая упоминания конкретных цифр. Он не мог брать на себя ответственность за них.
– Доктор Вивег считает, что заряд составляет меньше двадцати тысяч вольт.
– С моей точки зрения, он очень высок. Были ли какие-нибудь заметные проявления разряда?
– Не думаю. В таком случае мы рано или поздно не могли бы не заметить их. Телеметрическая аппаратура замерила бы измерение напряжения поля во время полета. Доктор Вивег убежден, что заряд не сказывается на электрооборудовании ракеты.
– Внесли ли ясность эксперименты на третьем испытательном стенде?
– Их результаты почти совпадают с мнениями доктора Вивега. Но не исключены ошибки, потому что во время испытаний сильный ветер заносил стенд песком.
– Пыль в воздухе и ее загрязнение струи газа в самом деле могут оказывать немалое воздействие. Но во всяком случае, я считаю, что из-за электростатических зарядов беспокоиться не стоит.
– Не взялся бы утверждать это с полной уверенностью, но, скорее всего, в самом деле не стоит.
– В какой мере на сигналы влияет ионизация сопла?
– Доктор Вивег говорит, что по его измерениям плотность ионов составляла десять в шестой степени на кубический сантиметр.
– По-моему, не так уж и много. Но мой вопрос заключается в другом: какое воздействие оказывает ионизация на наши сигналы?
– Они заметно слабеют. С нашим старым передатчиком в пятьдесят мегагерц на дистанции отсечки топлива падение мощности составляет девяносто процентов. Тем не менее пока наши сигналы проходили благополучно.
– А что дает установка в пятьсот мегагерц, этот несчастный моторизованный гигантский «носорог» из Вюрцбурга?
– Падение не превышает десяти процентов.
– Но, доктор, использовать этого «носорога» просто невозможно. Это чудовище не может работать в активном режиме. Вам доводилось в последнее время встречаться с сотрудниками «Телефункена»? Им удалось добиться какого-нибудь прогресса с нашей установкой на сантиметровых волнах?
– Я видел у них много новинок.
– Мой дорогой доктор, я спрашиваю, удалось ли им добиться успехов?
– Я склонен считать…
– Понятно! Что ж, думаю, мне придется самому отправиться к ним. Какого черта! Что толку в «А-4», если разброс попаданий так и будет составлять восемнадцать километров? Если на «Телефункене» впрягутся как следует, то еще в этом году нам удастся посылать ракеты на расстояние двести сорок километров с разбросом меньше чем девятьсот метров. С этим результатом уже можно иметь дело. Так что вы хотели мне показать?
– Вам стоит познакомиться с нашими новыми имитаторами для проверки различных механизмов системы управления и сервомеханизмов, а также с имитатором траектории. Он показывает недопустимый уровень амплитуды колебаний ракеты в разреженном воздухе, когда после сорока трех секунд полета, почти к завершению времени горения, включается радарный луч.
– Вы уже не раз мне это рассказывали. У меня начинают мерзнуть ноги. Что по этому поводу думает доктор Херманн? Разве в разреженном воздухе не та же величина аэродинамического торможения?
– Поскольку к концу управляемого участка траектории плотность воздуха стремительно падает, уменьшается и сила таранного давления – как и величина естественных аэродинамических колебаний. Но энергия полета самой ракеты остается практически неизменной. Сигналы, поступающие по лучу, продолжают увеличивать амплитуду колебаний. Разброс, вместо того чтобы уменьшаться, возрастает.
– Тут вы не убедили меня, доктор. Вы не должны внезапно уводить ракету с прямого курса, а также пускать в ход луч радара вплотную ко времени отсечки топлива. Если ракета с самого начала полета выдерживает курс по лучу радара и малейшее отклонение от него тут же корректируется, большого размаха колебаний не должно быть.
– Я и не настаиваю на этом. Но во всяком случае, могу доказать, что данный эффект существует.
– Ну что ж, доктор, покажите, что у вас нового.
Большинство дискуссий со Штейнхофом проходили таким же образом. Сначала он, преисполненный оптимизма, называл самые фантастические цифры и даты поставок. Затем горький опыт вызывал у него