13. d4aab2124cbddadbcb1a42cca3412dadbcb423134bc1

14. dbaab3dcacb1dadbc42ac2cc31012dadbcb4adb40000

15. db223a24acb11a3b24cacd12a241cdadbcb4adb4b300

16. d122ba2cacbd1a13211a2d02a2412d0dbcb4adb4b3c0

17. 1423b4d4a23d24131413234123a243a2413a21441343

18. db4abadcacb1dad3141ac212a3a1c3a144ba2db41b43

19. db2a33dcacbd32d313c21142323cc300000000000000

20. 1b33b4d4a2b1dadbc3ca22c000000000000000000000

21. d12443d43232d32323c213c22d2c23234c332db4b300

22. d4a2341cacbddad3142a2344a2ac23421c00adb4b3cb

Обратите особое внимание на ответы, выделенные жирным шрифтом. Могли ли пятнадцать из двадцати двух учеников умудриться дать шесть одинаковых правильных ответов подряд (d-a-d-b-c- b) сами по себе?

Есть, по меньшей мере, четыре причины, по которым это маловероятно. Первая: эти вопросы расположены в конце теста и сложнее предыдущих. Вторая: эти ученики не были даже хорошистами и едва ли могли дать шесть правильных ответов даже на простые вопросы, не то что на сложные. Третья: до этого момента в тесте ответы пятнадцати учеников почти не совпадали. Четвертая: трое из этих учеников (номера 1, 9 и 12) оставили без ответа минимум один вопрос перед подозрительным рядом, а закончили тест еще рядом пулей. Это указывает на то, что длинная непрерывная цепочка пропусков была прервана не учениками, а учительницей.

Есть и другая странность в этих ответах. В девяти из пятнадцати тестов перед правильными ответами шла другая одинаковая цепочка 3-а—1—2, которая включала три неправильных ответа. А во всех пятнадцати тестах после шести правильных ответов следовал один и тот же неправильный ответ 4. Почему же учительница озаботилась тем, чтобы подправить тесты учеников и вставить в них неправильные ответы?

Вероятно, в том была ее стратегия. В случае, если бы ее поймали и отвели в кабинет директора, она могла указать на неправильные ответы как на доказательство своей невиновности. А может быть — что вполне вероятно — она просто не знала правильных ответов сама. (В тестах на стандартизацию учителям обычно не дают ключа с ответами.) Если это так, то становится ясно, почему ее ученики нуждались в подделке результатов: у них просто была плохая учительница.

Еще одним доказательством обмана этой учительницы является общий результат класса А. Шестиклассники, которым дали тест на восьмом месяце учебного года, должны были бы выдать средний балл примерно 6,8, что соответствовало бы норме по стране. (Ученики пятого класса на восьмом месяце обучения должны были набрать 5,8, седьмого — 7,8 и т.д.) Ученики же класса А получили средний балл только 5,8, что на одну целую ниже, чем должны были. Это ясно показывает, что они плохо учились (или их плохо учили). Однако годом ранее они показали еще худший результат, получив за тест в пятом классе средний балл 4,1. Вместо того чтобы улучшить показатели на одну целую в шестом классе, как можно было ожидать, они улучшили их на 1,7 — почти на две целых. Но этот потрясающий скачок был кратковременным и весьма подозрительным. Когда эти ученики перешли в седьмой класс, они показали средний балл 5,5 — более чем на две целых ниже нормы и даже хуже, чем в шестом классе. Давайте теперь рассмотрим различия в результатах трех отдельных учеников класса А:

Балл 5-го класса Балл б-го класса Балл 7-го класса
Ученик 3 3 6,5 5,1
Ученик 6 3,6 6,3 4,9
Ученик 14 3,8 7,1 5,6

Между тем баллы, полученные за эти три года учениками класса Б, также были плохими, но, по крайней мере, указывали на их честные усилия: 4,2, 5,1 и 6,0. Таким образом, либо ученики класса А резко поумнели, а через год так же резко поглупели, либо их учительница немножко поколдовала своим карандашом. Как вы думаете, что более вероятно?

Есть два заслуживающих внимания момента, которые касаются отношения детей из класса А к мошенничеству как таковому. Во-первых, от результатов теста зависело, перейдут ли они в следующий класс или же останутся на второй год. А во-вторых, их ожидало огромное потрясение в седьмом классе. Они думали только о том, что благополучно продолжили учиться лишь благодаря результатам своих тестов. (Действительно, ни один ученик не был оставлен на второй год.) Это не они искусственно завысили показатели. Но они ожидали высоких результатов в седьмом классе и были горько разочарованы. Это, пожалуй, является самой неприятной стороной итогового тестирования. Учитель может сколько угодно говорить себе, что помогает ученикам, но на самом деле он делает им только хуже, поскольку гораздо больше беспокоится о себе.

Анализ всех данных по Чикаго обнаружил факты мошенничества учителей в более чем двухстах классах ежегодно, что дает примерно 5% от общей цифры. И это по скромным подсчетам, поскольку алгоритм позволил определить только самый грубый обман, когда учителя систематически подменяли ответы учеников. К сожалению, более изощренные формы нарушений он доказать не мог. Однако при недавнем опросе учителей Северной Каролины 35% респондентов сказали, что были свидетелями мошенничества их коллег в той или иной форме. Например, оно проявлялось в предоставлении ученикам дополнительного времени на тест, подсказывании ответов и их фальсификации [6.2].

Каковы же общие приметы такого мошенника? Собранные в школах Чикаго данные свидетельствуют, что к обману почти в равной степени склонны и мужчины, и женщины. Как правило, нечестную игру ведут более молодые и менее квалифицированные учителя. Причем, как правило, они начинают обманывать после смены своих стимулов. Поскольку чикагские исследования охватывают период с 1993 по 2000 год, в них упоминается введение итогового тестирования в 1996-м. Нетрудно догадаться, что главный пик мошенничества пришелся именно на этот год. И обман был в школах совсем не редким явлением. Наиболее к нему были склонны учителя самых слабых классов. Следует также отметить, что премию в двадцать пять

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату