время грозы заряжали лейденские банки. Гальвани развесил вдоль железной ограды в саду лягушачьи лапки на медных крючках и, к своему восхищению, смог лично наблюдать, как они подергиваются без видимой причины. (Возник слух, что истинным намерением Гальвани было приготовить суп из лягушачьих лапок для жены-инвалида, а знаменитое наблюдение — всего-навсего побочный продукт этой затеи; на самом же деле жена Гальвани, будучи дочерью знаменитого физиолога, наверняка просто участвовала в опытах мужа.) Гальвани пришел к заключению, что открыл “электрический флюид” — родственный, вероятно, источнику “животного магнетизма”, который Франц Антон Месмер (термин “месмеризм” образован от его имени) и другие пытались продемонстрировать во Франции.

В 1791 году Гальвани опубликовал свои наблюдения и их толкование под заглавием De Viribus Electricitas (“Об электрических силах”), после чего его слава быстро распространилась, к возмущению критически настроенных умов. Главным из них был профессор Университета Павии, физик- скептик Алессандро Вольта (1745–1827). Вольта повторил опыты Гальвани, однако догадался, что объяснения последнего абсурдны, а на самом деле электричество порождается сочетанием железа и меди, разделенных проводящим раствором в мускулах. Далее Вольта заметил, что биметаллическая пара способна порождать несильный электрический ток без какой бы то ни было подзарядки извне, и начал объединять такие пары в ряды, разделяя их кусками бумаги, вымоченной в соли. Это и есть вольтова батарея, которая вскоре попала в руки Хэмфри Дэви в Лондоне. С ее помощью Дэви осуществил электролиз воды (т. е. химическое разложение Н20 на газообразные водород и кислород, которые выделяются на электродах).

Гальвани — определенно человек с ограниченным воображением — так никогда и не отказался от веры в животное электричество. Он был озлоблен неприятием своей теории, смертью жены и политическими преследованиями, которые ему пришлось вынести (Гальвани решительно осуждал завоевание Наполеоном севера Италии, который, под названием Цизальпинской республики, сделался французской сатрапией). Зато его наверняка радовало то, что его идеи об электричестве энергично (пусть и в неверном направлении) продвигались его учеником и племянником Джованни Альдини. Альдини дошел до того, что стал подбирать свеже-отрубленные головы возле гильотины и вставлять электроды в мозг. Это, по его сообщениям, приводило к разным гримасам, подергиванию губ и распахиванию глаз. Вольта, со своей стороны, избегал подобной театральности и добился более широкого признания. Он предъявил свою батарею Французской академии наук в присутствии лично императора, а тот по достоинству оценил ее перспективы и наградил изобретателя золотой медалью. Имя Вольты увековечили в названии единицы напряжения, тогда как имя Гальвани — в названии гальванометра и, более того, в эмоционально окрашенном глаголе “гальванизировать”.

О Гальвани и Вольте пишут часто. Живое и краткое изложение можно найти в книге: Tanford Charles and Reynolds Jacqueline, The Scientific Traveler: A Guide to the People, Places and Institutions of Europe (Wiley, New York, 1992); дополнительные детали даны в работе Fulton J.F. and Cushing H., Annals of Science, 1, 593 (1936).

Вибрионы в Вене

Многие десятилетия подряд реакция агглютинации была краеугольным камнем лабораторной и клинической иммунологии. Методика такая: к взвеси неизвестных бактерий добавляют, к примеру, сыворотку, действующую на какой-нибудь известный вид. Если образуется осадок, который скапливается на дне пробирки, то вопрос, что это за бактерии, можно считать решенным. Культуры неизвестных бактерий следует определять при помощи набора сывороток, изготовленных из препаратов иммунных животных — таких как кролики или, реже, козы и лошади. Препарат из крови конкретного животного может служить стандартной сывороткой многие годы. Реакция была открыта в лаборатории Макса Грубера в Вене его студентом из Англии, Гербертом Эдвардом Даремом. Дарем вспоминает:

Тем памятным утром в ноябре 1894-го мы подготовили сыворотку и бактериальную культуру, которые нам выделил Пфайффер, к опыту по проверке его диагностической реакции in vivo. Профессор Грубер подозвал меня: “Дарем! Идите сюда и посмотрите!” Перед тем как сделать первые инъекции сыворотки и вибрионов (холерных бацилл), он поместил немного образца под микроскоп, и там агглютинацию можно было разглядеть. Несколько дней спустя мы приготовили наши смеси в небольших стерилизованных стеклянных банках; так вышло, что ни одна из них не была стерилизована как следует, и мне пришлось взять несколько стерильных пробирок; поместив туда культуру и сыворотку, я оставил их ненадолго постоять, а потом закричал сам: “Профессор! Идите сюда и посмотрите!” Как образуется осадок, можно было увидеть невооруженным глазом. Так появилось сразу два метода — микроскопический и макроскопический.

Агглютинацию в пробирке заметили только потому, что у Дарема не нашлось стандартной стерильной посуды. Право считаться первооткрывателем позже оспаривал немецкий бактериолог Ричард Пфайффер, который предоставил Дарему и Груберу материалы для прививок.

История излагается в книге Beveridge W.1B., The Art of Scientific Investigation (Heinemann, London, i960).

Склока в лаборатории

Если сравнивать то, как разные открытия сказались на жизни и благополучии людей, то открытие инсулина было, возможно, самым ярким событием в истории современной науки. Вплоть до 1920-х диагноз “диабет” (который врачи обычно ставили, увидев пятна высохшего сахара на обуви или брюках пациента- мужчины) обещал раннюю и болезненную смерть. Ее можно было избежать разве что за счет жесткой диеты, не менее мучительной для большинства больных, чем сама болезнь.

История инсулина не обошлась без несчастий, злобы и обманов. Когда в 1923 году Нобелевскую премию присудили двум главным действующим лицам — Фредерику Бантингу (1891–1941) и Джону Маклеоду (1876–1935), это вызвало возмущение у тех, кто (не без оснований) считал, что их роль в открытии преуменьшена или забыта. Одним из возмущавшихся был Николае Паулеску, румынский физиолог, чьи наблюдения были решающими в отыскании связи между диабетом и дефицитом активного компонента поджелудочной железы. Он открыл, что повышенный уровень сахара в крови и моче собак, у которых диабет был искусственно вызван удалением поджелудочной железы, становился ниже, когда вытяжку из поджелудочной вводили животным обычной инъекцией. Паулеску пришлось отложить свои исследования на четыре года — по той причине, что в его страну в конце Первой мировой вторглись австро-венгерские войска. Когда же он вернулся к этой теме, то Бантинг, Маклеод, Бест и Коллип в Торонто уже вплотную подошли к разгадке.

Молодой немецкий врач Георг Цюльцер добился, похоже, потрясающего результата, вводя умирающему пациенту вытяжку поджелудочной — однако его работы также проводились в чрезвычайно неподходящих для этого условиях и были прерваны войной. Куда более известный немецкий физиолог, Оскар Минковский, считал претензии Цюльцера смехотворными: именно Минковский первым установил связь между сахаром и поджелудочной железой. Считают, что он догадался о присутствии сахара в моче собаки без поджелудочной (к тому же страдающей недержанием), когда заметил, что пятна на лабораторном полу собирают мух. В этой истории нет повода сомневаться хотя бы потому, что ее рассказывал знаменитый американский физиолог У.Б. Кэннон; однако сам Минковский всегда отрицал, что причина открытия — случайное стечение обстоятельств. Так или иначе, Минковский, которому научный руководитель поручил исследовать роль поджелудочной железы в расщеплении жиров, действительно диагностировал у собаки, которой удалили эту железу, сахарный диабет. На заявления Цюльцера Минковский отвечал, что ничуть не меньше сожалеет о его неудаче.

Окончательной победы добилась группа с факультета физиологии Торонтского университета,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату