«квадратичной» программы:

1. Если исходное z равняется 1, то результирующее Z всегда остается равным 1.

2. Если исходное z больше 1, то в результате число стремится к бесконечности.

3. Если исходное z меньше 1, то в результате число стремится к нулю.

Поэтому наш круг с радиусом 1 фактически представляет собой карту — или, если хотите, ограду, забор, делящий плоскость на две зоны. За пределами ограды числа, повинующиеся квадратичному закону, имеют свободу движения к бесконечности; числа, находящиеся внутри, — пленники, запертые и обреченные на полное изничтожение.

Тут кто-нибудь воскликнет: «Вы говорили только о расстоянии до точки старта. Но чтобы определить положение точки, нужно знать направление радиуса, вектор. Что скажете?»

Совершенно верно. К счастью, при делении z на два четких класса направление не имеет значения. Результат будет одинаковым, в какую бы сторону вектор ни указывал. Наш пример прост, мы работаем с особым множеством (назовем его «К», то есть квадратичным). Следовательно, можно смело игнорировать направление. Когда же мы придем к более сложному варианту множества Мандельброта, где векторы играют роль, я покажу очень хитрый математический фокус. Он поможет справиться с проблемами за счет использования сложных или воображаемых чисел (на самом деле они не особо сложны и вовсе не воображаемы). Пока в них нет нужды, и я обещаю больше не беспокоить вас подобным.

Множество «К» лежит внутри карты. Все его точки располагаются на окружности с радиусом 1. Она представляет собой непрерывную линию, не имеющую толщины. Если исследовать линию с помощью самого мощного микроскопа, она всегда будет выглядеть одинаково. Вы можете увеличить множество «К» до размеров Вселенной, но не увидите ничего, кроме линии с нулевой толщиной. Однако в ней нет ни одной дырочки; это абсолютно непроницаемый барьер, на веки вечные отделяющий все z менее единицы от z больше единицы.

Теперь мы наконец готовы рассмотреть множество Мандельброта, где все идеи, подсказанные здравым смыслом, переворачиваются вверх тормашками. Пристегните ремни.

В семидесятые годы двадцатого века французский математик Бенуа Мандельброт, сотрудничавший с Гарвардским университетом и компанией IBM, приступил к исследованию уравнения, впоследствии сделавшего его знаменитым. В динамической форме оно записывается так:

Z ↔ z2 + c

Единственное различие между этой формулой и той, что мы использовали для описания множества «К», это показатель c. Именно он, а не переменная z теперь является отправной точкой для нашей операции по составлению карты. При первом шаге по спирали z приравнивается к нулю.

Казалось бы, изменение крошечное. Невозможно представить, что за счет него будет сотворена целая вселенная. Мандельброт получил первые приближенные данные только к весне 1980 года, когда на компьютерных распечатках начали появляться смутные закономерности. Он услышал ту китсовскую песню:

…что не раз Влетала в створки тайного окна Над морем сумрачным в стране забвенной[43].

Новое уравнение ставит тот же вопрос, что и предыдущее, и дает на него ответ. Каковы очертания «территории», получающейся при нанесении чисел на карту? Для множества «К» это была окружность с радиусом, равным 1. Давайте внесем эту величину в уравнение Мандельброта и посмотрим, что произойдет. При первых шагах вычисления легко производить в уме. Но спустя несколько десятков итераций даже у суперкомпьютера сгорит процессор.

Для начала: z = 0, с = 1. Следовательно, Z = 1

Первая петля: Z = 12 + 1 = 2

Вторая: Z = 22 + 1 = 5

Третья: Z = 52 + 1 = 26

Четвертая: Z = 262 + 1… и так далее.

Моих программистских способностей хватило, чтобы однажды заставить компьютер подставить в уравнение числа покрупнее. Машина обыграла меня всего на две итерации, а потом начала округлять:

1, 2, 5, 26, 677, 458330,

21006640000

4412789000000000000000

Тут компьютер сдался, поскольку он не верит, что существуют числа более чем из 38 разрядов.

Однако даже первых двух полученных значений достаточно, чтобы показать: очертания множества Мандельброта должны существенно отличаться от идеальной окружности множества «К». Точка с координатой «1» находится внутри множества «К», и она же определяет ею границу. Точка с таким же расстоянием в множестве Мандельброта может вылезать за границу.

Обратите внимание: я говорю «может», а не «должна». Все зависит от изначального направления относительно начала координат. Пока что мы его игнорировали, поскольку оно не влияло на наш разговор о множестве «К», наделенном абсолютной симметричностью. Как выясняется, множество Мандельброта симметрично только относительно оси X — то есть горизонтали.

Кто-то, возможно, уже догадался об этом, исходя из природы уравнения. Но вряд ли возможно интуитивно определить, как оно выглядит в действительности. Если бы мне задали такой вопрос в девственные «домандельбротовы» времена, я бы, пожалуй, робко предположил: «Наверное, что-то вроде овала, вытянутого вдоль оси Y». Возможно, смекнул бы даже, что картинка будет смешена влево, в направлении минуса.

Предлагаю провести мысленный эксперимент. Множество Мандельброта объективно неописуемо, но вот моя попытка сделать невозможное.

Представьте, что вы смотрите сверху на толстую черепаху, плывущую за запад. Она врезалась в рыбу-меч, поэтому перед ней торчит узкая спица. Панцирь ее по всему периметру оброс гирляндами причудливых морских водорослей и черепахами-малютками всевозможных размеров, к которым тоже прилипли разные водоросли…

Попробуйте найти подобное описание в учебнике математики. Если думаете, что у вас получится лучше, поглядите на эту зверюгу — и пожалуйста, милости просим. (Подозреваю, что в мире насекомых нашлись бы аналогии получше. Возможно, где-нибудь в бразильской сельве ползает «мандельжук». Жаль, мы этого никогда не узнаем.)

Вот первая, весьма приблизительная картинка, лишенная деталей. Она очень похожа на «пруд Мандельброта» около замка Конрой (глава 18). Если решите заполнить белые пятна излюбленными пометками средневековых картографов типа «Здесь драконы», смело приступайте. Сомневаюсь, что ваши предположения окажутся сильно далекими от истины.

Прежде всего, обратите внимание на следующее. Как я уже отмечал, множество Мандельброта смещено влево (на запад, если угодно) относительно множества «К», которое простирается от +1 до -1 вдоль оси X. Вдоль горизонтальной оси наша черепаха добирается только до 0,25, хотя выше и ниже она разбухает почти до 0,4.

В левую сторону карта тянется примерно до -1,4, а затем вырождается в своеобразную спицу — или антенну, — которая заканчивается ровно на -2. С точки зрения множества Мандельброта за этой точкой нет

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату