настоящим и будущим — стал элементом конструкции четырехмерного множества пространства- времени.
И до середины ХХ века «все было в порядке». Но вот, замечает Р. И. Пименов, «в семидесятые годы ХХ века Мандельброт выпустил книгу, где собрал богатый материал, убедительно вводивший в практический оборот многие из казавшихся безнадежно «абстрактными», 'заумными', «патологическими» математических конструктов.
Заумными и патологическими их считали потому, что в них было невозможно ввести понятие дифференциала. Любой их самый маленький элемент (отрезок, площадка, объем) оказывался “сложно устроенным” и не имел “бесструктурных областей”, необходимых для существования дифференциалов.
И канторовы дисконтинуумы, и покрывающая всю плоскость кривая Пеано, и ковры-кривые Коха и Серпиньского выглядят теперь как обнаруженные в реальности “главы” из “геометрии природы”; они помогли понять лунный пейзаж, скопления галактик и многое другое столь же невыдуманное, а глазам предлежащее».
Ковер Серпиньского. Алгоритм его построения таков: берется квадрат, тремя горизонтальными и тремя вертикальными прямыми делится на девять равных квадратов и центральный удаляется (вырезается). На следующем шаге точно так же поступают с оставшимися восемью квадратами. В результате, при бесконечном числе итераций, из квадратной плоскости получается фантастический ковер, состоящий из бесчисленного количества квадратных дырок, площадь основы которого стремится к нулю.
Здесь не место описывать и разъяснять подробно новую «парадигму фракталов». В том смысле, который отражает взгляд Р. И. Пименова, можно характеризовать фрактал как не обязательно гладкое самоподобное множество. Проще говоря, любой элемент фрактала при увеличении масштаба его рассмотрения оказывается похожим сам на себя при прежнем масштабе. Посмотрите еще раз на ковер Серпиньского. Каждая его темная площадка при рассмотрении в микроскоп оказывается таким же «дырявым ковром», как и изображенный на рисунке. И чем сильнее увеличение микроскопа, тем на более глубоком уровне мы обнаруживаем это странное свойство. И
Для тех, кто не знаком с математическими описаниями фракталов, лучше всего будет набрать это слово в любом интернет-поисковике и любоваться неожиданными красотами графического выражения этих «”заумных” математических конструктов».
Например, таким, какой изображен на первой странице обложки журнала.
Для нас сейчас важно осознать, что с появлением фракталов укрепилось представление о том, что дифференциальные уравнения — не универсальное средство описания физической реальности! Загадочное свойство «фрактальной размерности» реальных объектов никак не соответствует ни математическому, ни «житейскому» пониманию гладкости пространства.
С появлением фракталов стало ясно, что ни уравнение Шредингера, ни уравнение Эйнштейна, казавшиеся универсальными инструментами, пригодными
Мы выбираем!
Берите все, что видите, на веру,
Рыдайте вслух и радуйтесь взахлеб,
А жизненного опыта химеру
На этот случай сдайте в гардероб!..
Некоторое время можно было надеяться, что все-таки большинство известных физических явлений хотя бы приблизительно можно описать с помощью дифференциальных уравнений.
Анализ, выполненный математиками, показал, что в случаях размерностей 1,2,3 и даже отчасти 5 и 6, это соответствует математической реальности. И, поскольку мы считаем наше физическое пространство трехмерным, то его характеристика, данная Б. Грином, вполне корректна.
Но, как сообщает Р. Пименов, «…Обнаружилось, что в размерности четыре ситуация совершенно иная. В той самой размерности, которая нужнее всего физике. Ибо физике нужна еще координата
Это утверждение Револьта Ивановича хорошо иллюстрирует доказанная в 1976 г. американскими математиками Кеннетом Аппелем и Вольфгангом Хакеном теорема о том, что ЧЕТЫРЬМЯ различными красками можно раскрасить бесконечное число различных карт. А карта — это как раз топологическое многообразие. Как подсказал мне математик и блестящий толкователь «математических премудростей» А. В. Коганов, которому я признателен за весьма полезные замечания, множество
Более того! Математика утверждает, как пишет Р. И. Пименов, что «…
Вот ключевая мысль пименовского эссе! Здесь Револьт Иванович обращает внимание на то, что разные гладкости
Изоморфизм — «одинаковость формы». А если нет изоморфизма, значит, пространства имеют разные структуры, а неизоморфные объекты и «устроены по-разному».
Так, бурные политические события на рубеже тысячелетий привели к тому, что политические карты мира 1990 и 2011 гг. топологически совершенно разные объекты!
Почти одновременно с Р. И. Пименовым на экзотические гладкости и их применение к теории пространства-времени в 1987 году обратил внимание и А. К. Гуц, который тогда же обсуждал эти проблемы с Р. И. Пименовым.
Итак, даже в «классических случаях», описываемых «нашим» четырехмерным пространством- временем, мы, оказывается, каким-то образом ВЫБИРАЕМ среди множества РЕАЛЬНЫХ форм существования объектов только одну и живем в этом своем выборе!
Каков механизм этого выбора, как конкретно описать его математически — это и есть «прикладные вопросы», над которыми нужно работать. При этом, как заметил А. К. Гуц, «главная трудность состоит в том, что сама гладкость как-то не описывается без гладкости. Чего-то мы пока не понимаем».
Но вывод из «абстрактно-математических» результатов дифференциальной топологии вполне