должен определять пользователь. Так же как и сигнал SIGTERM
, эти сигналы никогда не посылаются системой.
• SIGVTALRM [28]
— сигнал виртуального таймера (virtual timer expired). Подобно SIGPROF
и SIGALRM
, этот сигнал возбуждается по истечении времени таймера (это третий из доступных таймеров), который измеряет время процессора только в пользовательском режиме (таймер устанавливается заданием первого параметра setitimer()
, равным ITIMER_VIRTUAL
).
• SIGXCPU [30]
— сигнал о превышении лимита процессорного времени (CPU time limit exceeded). Посылается процессу при исчерпании им ранее установленного лимита процессорного времени. Действие по умолчанию — аварийное завершение.
• SIGXFSZ [31]
— сигнал о превышении предела, установленного на размер файла (file size limit exceeded). Действие по умолчанию — аварийное завершение.
• SIGWINCH [20]
— сигнал, который генерируется (в консольном режиме pterm
и xterm
эмулируют его вручную при изменении их размеров) при изменении размера окна (window size change) для запущенного в окне приложения (mc, mqc…), чтобы оно перерисовало свой экран вывода.
В QNX определено еще два специфических сигнала, которые вряд ли должны представлять для нас интерес:
• SIGIOT [6]
— IOT-инструкция; никогда не генерируется для платформы x86.
• SIGPWR [19]
— сигнал power-fail restart о котором в технической документации QNX ничего не говорится, но в преамбуле, описывающей нововведения версии 6.2.1, сказано: «corrected SIGPWR to SIGTERM», то есть этот сигнал, очевидно, — рудимент прежних версий системы.
POSIX допускает, что не все сигналы могут быть реализованы. Более того, допускается ситуация, когда некоторое символическое имя сигнала определено, но сам сигнал отсутствует в системе (изменения такого рода вполне могут наблюдаться при переходе от одной версии QNX к другой). Для диагностики реального наличия сигнала можно воспользоваться рекомендацией, приведенной в информативной части стандарта POSIX 1003.1: наличие поддержки сигнала сообщает вызов функции sigaction()
с аргументами act
и oact
, установленными в NULL
. Приведем простейший тест (
#include <stdlib.h>
#include <stream.h>
#include <errno.h>
#include <signal.h>
int main(int argc, char *argv[]) {
cout << 'SIGNO';
for (int i = _SIGMIN; i <= _SIGMAX; i++) {
if (i % 8 == 1) cout << endl << i << ':';
int res = sigaction(i, NULL, NULL);
cout << ' ' << ((res != 0 && errno == EINVAL) ? '-' : '+');
}
cout << endl;
return EXIT_SUCCESS;
}
И результат его выполнения:
SIGNO
1: + + + + + + + +
9: + + + + + + + +
17: + + + + + + + +
25: + + + + + + + +
33: + + + + + + + +
41: + + + + + + + +
49: + + + + + + + +
57: - - - - - - - -
Система «считает» все сигналы 1…56 реализуемыми, а последние 8 специфических сигналов QNX, как упоминалось выше, не допускают применения к ним sigaction()
. Здесь с учетом цитировавшейся выше раскладкой сигналов QNX есть небольшая загадка: максимальным номером POSIX- сигнала, определенного в <signal.h>
, является 31 (SIGXFSZ
– 31); там же в комментарии есть фраза: «допустимый диапазон пользовательских сигналов — от 1 до 56, используемых ядром — от 57 до 64». Непонятно, в каком качестве используются сигналы 32–40, непосредственно предшествующие сигналам реального времени (41–56) и диагностируемые sigaction()
как действительные (valid)? Позже мы увидим, что они обслуживаются системой наравне с документированными сигналами.
Традиционная обработка сигнала
В этой части изложения мы рассмотрим традиционные модели перехвата сигналов и установки для них собственных обработчиков (в том числе и игнорирование или восстановление стандартной обработки по умолчанию). Термин «традиционный» здесь означает, что мы бегло рассмотрим обработку сигналов применительно к процессам и стандартным сигналам UNIX (не сигналам реального времени), то есть в том изложении, как она традиционно рассматривается в литературе по UNIX (и здесь сигнал воспринимается, конечно же, единственным потоком приложения, а не процессом, но в этом случае различие не принципиально). Позже мы рассмотрим модель обработки сигналов реального времени и расширим ее на многопоточные приложения.
«Старая» модель обработки сигнала
В ранних версиях UNIX была принята единственная модель обработки сигналов, основанная на функции signal()
, которая подразумевает семантику так называемых «ненадежных сигналов», принятую в этих ОС. Позже эта модель была подвержена радикальной критике, вскрывшей ее «ненадежность». Данная модель сохранена для совместимости с ранее разработанным программным обеспечением. Она обладает существенными недостатками, основными из которых являются:
• процесс не может заблокировать сигнал, то есть отложить получение сигнала на период выполнения критических участков кода;
• каждый раз при получении сигнала его диспозиция устанавливается на действие по умолчанию, и при необходимости продолжить обработку поступающих сигналов требуется повторно восстанавливать требуемый обработчик.
Вот пример (
#include <iostream.h>