• Дескриптор, соответствующий, скажем, узлу «host», полученный на узле «А», может иметь значение N, но дескриптор того же узла, полученный на узле «В», будет иметь уже значение M, то есть дескриптор узла — это «дескриптор сетевого узла X, как он видится с сетевого узла Y».
• Тот же дескриптор узла «host» может быть определен как имеющий значение N, но уже через несколько секунд он может «сменить» свое значение на M, то есть значения, полученные netmgr_strtond()
, должны использоваться немедленно...
Эти и другие сложности относятся к особенностям программного использования QNET и требуют отдельного обстоятельного обсуждения. Однако они не являются предметом нашего текущего рассмотрения.
pid
— PID процесса, которому направляется сигнал, pid
может иметь и отрицательное значение, при этом положительное значение (-pid
) идентифицирует группу процессов EGID, и сигнал будет отправлен всем процессам группы. При нулевом значении pid
сигнал будет отправлен всем процессам группы процесса отправителя.
tid
— 0 или TID потока, которому направляется сигнал. При указании tid
сигнал будет доставляться только указанному потоку, а при tid
= 0 — всем потокам процесса. Дальнейшая судьба сигнала в обоих случаях зависит от маскирования сигнала в потоке, как мы рассматривали ранее.
signo
— номер сигнала (с ним неоднократно встречались выше).
code
и value
— код и значение, ассоциированные с сигналом (их мы тоже встречали при рассмотрении модели сигналов реального времени).
Как и обычно, внешнее различие (для программиста) основной формы SignalKill()
и формы, безопасной в многопоточной среде, SignalKill_r()
состоит в том, что:
• SignalKill()
возвращает -1 в случае ошибки, а код ошибки заносится в errno
; любой другой возврат является индикатором успешного выполнения;
• SignalKill_r()
возвращает EOK
в случае успеха, а в случае ошибки возвращается отрицательный код ошибки (тот же, который основная форма заносит в errno
, но со знаком минус).
Возможны следующие коды ошибок, возвращаемые этими вызовами:
EINVAL
— недопустимое числовое значение signo
;
ESRCH
— несуществующий адресат (pid
или tid
);
EPERM
— процесс не имеет достаточных прав для посылки сигнала;
EAGAIN
— недостаточно ресурсов ядра для выполнения запроса.
Для того чтобы получить работающий пример использования этой возможности, возьмите любой из приводившихся выше примеров, разнесите процессы по сетевым узлам и определите «целеуказание» в процессе-отправителе.
Простейшим примером и демонстрацией удаленной реакции в сети может быть следующая последовательность действий:
• Производим запуск задачи на удаленном узле, например:
# on -f <host> raqc
• После чего, выполнив ряд операций в запущенной программе, прекращаем ее работу по [Ctrl+C] с локального терминала.
Интересно оценить далеко идущие последствия этого «маленького» расширения стандартной POSIX- схемы работы с сигналами:
• На технике «сетевых сигналов» может быть построена целая система уведомлений сетевых составляющих компонент единой программной прикладной системы.
• Именно «уведомлений» (но не синхронизации с наследованием приоритетов, влияющей на общую систему диспетчеризации составляющих частей и т.п.): посылка сигнала является неблокирующей операцией (не требует ответа), а прием сигнала не сопровождается наследованием (или любым изменением) приоритетов.
• Такое «сигнальное» взаимодействие, записанное в формальной POSIX-семантике (но, по сути, осуществляющее механизмы, далеко выходящие за POSIX), может оказаться гораздо проще в записи и понимании, чем при использовании низкоуровневых механизмов обмена сообщениями (пульсами).
4. Примитивы синхронизации
ОС QNX Neutrino предоставляет широкий набор элементов синхронизации выполнения потоков, как в рамках одного процесса, так и разных. Это практически полный спектр примитивов, описываемых как базовым стандартом POSIX, так и всеми его расширениями реального времени. Тем не менее при работе со всеми этими примитивами не покидает ощущение, что некоторые из них являются органичными для самой ОС (мьютекс, условная переменная), в то время как другие — достаточно громоздкая надстройка над базовыми механизмами, реализуемая, главным образом, в угоду POSIX.
К сожалению, и техническая документация QNX [8], и фундаментальная книга Р. Кертена [1] написаны по одной схеме:[35] все, что касается примитивов синхронизации, введенных более поздними расширениями POSIX (барьеры, жесткая блокировка (sleepon), спинлок, блокировки чтения-записи), описывается детально и сопровождается обстоятельными примерами кода, а вот базовые понятия, такие как pthread_mutex_t
, sem_t
(да и pthread_cond_t
, по существу), описаны лишь качественно, «на пальцах», в иллюстративных рассказах об алгоритме пользования ванной комнатой и кухней (термин bathroom встречается намного чаще, чем pthread_mutex_t
). Мы попытаемся по возможности компенсировать этот перекос.
Хотелось бы обратить внимание на интересный факт. В POSIX-варианте API QNX представлен большой набор разнообразных средств синхронизации: мьютексы, условные переменные, семафоры, барьеры, блокировки чтения/записи, ждущие блокировки, спинлоки. Однако в родном native API QNX из всего этого многообразия мы видим всего три элемента синхронизации: мьютекс, семафор и условная переменная. И это при том, что условная переменная не является самостоятельным средством синхронизации и применяется как расширение функциональных возможностей мьютекса!
Это означает, что все многообразие средств синхронизации, предоставляемое в POSIX API QNX, строится исключительно с применением этих минимальных средств синхронизации. Действительно, анализ заголовочных файлов системы показывает, что все дополнительные средства синхронизации, появляющиеся в POSIX API, строятся с использованием
Независимо от того, какой набор элементов синхронизации окажется предпочтительным для разрабатываемой вами системы, важным является тот факт, что в случае, если предлагаемые системой средства синхронизации по каким-то причинам вас не устраивают, то ничто не мешает разработать собственные средства синхронизации, используя тот или иной базис или даже их комбинацию. И эффективность полученного нового средства синхронизации будет зависеть только от вас.
Мы постараемся проиллюстрировать эту идею примерами использования базовых средств