расспрашивал, отнесся к этому немного скептично. Этот же хирург говорит о себе и своих товарищах гастроэнтерологах как о возвеличенных водопроводчиках. Сами водопроводчики иногда используют более крупномасштабные версии эндоскопов, чтобы исследовать трубы, и в Америке они даже посылают в них механических «свиней», прогрызающих себе дорогу через засоры в канализациях. Безусловно, методы, которые я представил себе для хирурга, будут работать и для водопроводчика. Водопроводчик мог бы «бродить» (или «плавать»?) по виртуальному водопроводу с виртуальной шахтерской лампой на шлеме и виртуальной киркой в руке, чтобы прочищать засоры.
Парфенон в моем первом примере не существовал нигде, кроме компьютера. Компьютер мог бы также познакомить вас с ангелами, гарпиями или крылатыми единорогами. Мой гипотетический эндоскопист и водопроводчик, с другой стороны, шли через виртуальный мир, который был ограничен, так чтобы походить на нанесенную на карту часть реальности, реальную внутреннюю часть канализации или кишечника пациента. Виртуальный мир, который был представлен хирургу на его стереоэкранах, был, впрочем, построен в компьютере, но он был построен упорядоченным образом. Была реальная управляемая лазерная пушка, хотя и представленная как цепная пила, потому что так она ощущалась подобно естественному инструменту, чтобы вырезать опухоль, видимый размер которой был сопоставим с собственным телом хирурга. Форма виртуальной структуры отображалась способом, самом удобном для хирургической операции, в деталях реального мира внутри пациента. Такая ограниченная виртуальная реальность является центральной в этой главе. Я полагаю, что каждый вид, обладающий нервной системой, использует такую, чтобы конструировать модель своего собственного, особого мира, ограничиваемого непрерывным обновлением через органы восприятия. Природа модели может зависеть от того, как данный вид собирается ее использовать, по крайней мере не меньше, чем от того, как мы могли бы представить себе природу самого мира.
Представьте себе планирующую чайку, ловко парящую на ветру недалеко от морского утеса. Она может не махать крыльями, но это не означает, что мускулы ее крыльев бездействуют. Они и мускулы хвоста постоянно вносят крошечные коррективы, чутко настраивая рулевые поверхности птицы под каждый вихрь, каждый воздушный нюанс вокруг нее. Если бы мы загружали информацию о состоянии всех нервов, управляющих этими мускулами, в компьютер, момент за моментом, то компьютер мог бы в принципе восстановить все детали воздушных потоков, в которых парила птица. Это было бы сделало исходя из предположения, что птица правильно сконструирована, чтобы оставаться в воздухе, и на этом предположении была бы построена непрерывно обновляемая модель воздуха вокруг нее. Это была бы динамическая модель, как синоптическая модель мировой погодной системы, которая непрерывно пересматривается согласно новым данным, предоставляемыми метеорологическими судами, спутниками и наземными станциями и может быть экстраполирована для предсказания будущего. Погодная модель сообщает нам о завтрашней погоде; модель чайки теоретически способна «советовать» птице исходя из упреждающего регулирования, что она должна делать мускулами своих крыльев и хвоста, чтобы парить в следующую секунду.
Вопрос, над которым мы работаем, конечно в том, что, хотя ни один человеческий программист еще не создал компьютерную модель, советующую чайкам, как подстраивать их мускулы крыльев и хвоста, как раз такая модель, безусловно, непрерывно работает в мозге нашей чайки и любой другой птицы в полете. Подобные модели, предварительно запрограммированные в общих чертах генами и прошлым опытом, и непрерывно обновляемые каждую миллисекунду новыми сенсорными данными, работают в черепе каждой плавающей рыбы, каждой галопирующей лошади, каждой летучей мыши, определяющей расстояние с помощью эха.
Этот остроумный изобретатель Пол Маккриди наиболее известен своими великолепными экономичными аэропланами, управляемыми мускульной силой человека «Госсамер Кондором» и «Госсамер Альбатросом», и «Solar Challenger-ом» на солнечных батареях. Он также в 1985 году построил половинного размера летающую точную копию кетцалькоатля, гигантского птерозавра Мелового периода. Эта огромная летающая рептилия с размахом крыльев, сопоставимым с крыльями легкого самолета, почти не имела хвоста и была поэтому очень неустойчива в воздухе. Джон Мэйнард Смит, учившийся на аэроинженера, пока не переключился на зоологию, указывал, что это дает преимущество в маневренности, но требует точного, контроля в реальном времени над рулевыми поверхностями. Без быстрого компьютера для непрерывной балансировки модель Маккриди разбилась бы. У реального кетцалькоатля, должно быть, в голове был аналогичный компьютер, по той же причине. У более древних птерозавров были длинные хвосты, в некоторых случаях заканчивающиеся чем-то похожим на ракетку для пинг-понга, придававшие большую стабильность за счет маневренности. Похоже, в поздней эволюции почти всех бесхвостых птерозавров, таких как кетцалькоатль, произошло изменение от устойчивости, но неманевренности к маневренности, но неустойчивости. Ту же тенденцию можно заметить в эволюции рукотворных самолетов. В обоих случаях изменения стали возможными только благодаря увеличению компьютерной мощности. Как в случае с чайкой, бортовой компьютер птерозавра в его черепе, должно быть, управлял имитационной моделью животного и воздуха, в котором оно летало.
Вы и я, мы, люди, мы, млекопитающие, мы, животные, населяем виртуальный мир, построенный из элементов, которые, на прогрессивно более высоких уровнях полезных для отражения реального мира. Конечно, мы чувствуем, будто твердо находимся в реальном мире — что в точности то, как должно быть, если наше ограниченное программное обеспечение виртуальной реальности работает сколько либо адекватно. Она и вправду хороша, и те исключительные разы, когда мы замечаем её вообще, представляют собой редкие случаи, когда что-то идет не так. Когда это случается, мы испытываем иллюзию или галлюцинацию, вроде иллюзии вогнутой маски, о которой мы говорили ранее.
Британский психолог Ричард Грегори обратил особое внимание на оптические иллюзии как средство изучения того, как работает мозг. В своей книге «Глаз и мозг» (пятое издание 1998 года), он рассматривает зрение как активный процесс, в котором мозг выдвигает гипотезы о том, что происходит, а затем проверяет эти гипотезы данными, поступающими от органов восприятия. Одна из самых известных среди всех оптических иллюзий — куб Неккера. Это простой рисунок полого куба в виде линии, как бы куб, сделанной из стальных прутов. Рисунок представляет собой двумерную картину из чернил на бумаге. И все же нормальный человек видит это как куб. Мозг создал трехмерную модель, основанную на двумерном рисунке на бумаге. На самом деле, подобные вещи мозг делает почти всякий раз, когда вы смотрите на картину. Этот плоский рисунок чернилами на бумаге одинаково совместим для мозга с двумя альтернативными трехмерными моделями. Пристально смотрите на рисунок в течение нескольких секунд, и вы увидите, что он переключится. Грань, прежде казавшаяся ближайшей к вам, будет теперь казаться дальней. Продолжайте смотреть, и рисунок переключится обратно к первоначальному кубу. Мозг, возможно, сконструирован так, чтобы придерживаться, произвольно, одной из двух моделей куба, скажем первой из двух, которую он обнаружил, даже при том, что другая модель будет столь же совместима с информацией от сетчатки глаз. Но фактически мозг делает другой выбор, придерживаясь каждой модели, или гипотезы, поочередно на нескольких секунд за раз. В результате куб переключается, выдавая всю игру. Наш мозг строит трехмерную модель. Это — виртуальная реальность в голове.
Когда мы смотрим на реальную деревянную коробку, нашей моделирующей программе предоставлена дополнительная информация, которая позволяет добиться явного предпочтения одной из двух внутренних моделей. Поэтому мы видим коробку только одним способом, и нет никакого чередования.
Но это не преуменьшает морали главного урока, который мы получили от куба Неккера. Всякий раз, когда мы смотрим на что-нибудь, восприятие, которое наш мозг фактически использует, является моделью этой вещи в мозге. В мозге строится модель, такая же как виртуальный Парфенон из моего более раннего примера. Но, в отличие от Парфенона (и, возможно, от наших сновидений), она, как компьютерная модель внутренностей пациента, не полностью выдуманная: она ограничена информацией, поступающей из внешнего мира.
Более сильная иллюзия объемности передается стереоскопией, небольшим рассогласованием между двумя изображениями, видимыми левым и правым глазом. Именно на этом основано использование двух экранов в шлеме виртуальной реальности. Выставьте правую руку, с большим пальцем, направленным к вам, приблизительно в одном футе перед вашим лицом, и посмотрите на какой-нибудь отдаленный объект, скажем дерево, двумя открытыми глазами. Вы увидите две руки. Они соответствуют изображениям, видимым вашими двумя глазами. Вы можете быстро узнать, где какое, закрыв сначала один, а затем другой