сверхпроводимость – это же новое качество в энергетике! Нанотех здесь применяется?

– Это, пожалуй, вопрос терминологии. Точный ответ таков – в этой задаче принципиально важна структура материала на наномасштабе. Высокотемпературные сверхпроводники – замечательная модель иерархических структур в твердом теле. Там есть уровень «макро» – левитаторы, большие шестигранные шайбы, которые можно уложить так, чтобы они образовали сплошную поверхность, поместить в жидкий азот, и над ними будет что-то «плавать» (например, поезд со сверхпроводящими элементами будет скользить над магнитным рельсом). Есть уровень «микро», который описывает организацию зерен- кристаллитов: несовершенства на границах зерен должны быть минимальны. Крайне важен и уровень «мезо» (субмикро). Потому что именно такой масштаб имеют несовершенства, ответственные за появление вихрей Абрикосова, которые работают как центры пиннинга – без них сверхпроводник второго рода не сможет выдержать сколь-либо значимых критических токов. Спрашивается, что же нового дает уровень нано?

А вот что. Вихри Абрикосова – очень небольшие по размеру. Желательно, чтобы центры пиннинга ('пришпиливания' вихря) были неподвижны. Поэтому порождающие их несовершенства структуры должны иметь как раз наноразмеры. И именно такие включения обнаружились в неодим-содержащих бариевых купратах. Берется твердый раствор (кристаллическая решетка, в которой часть атомов заменена на другие) – и он при определенной термообработке расслаивается, образуя «паркетную» наноструктуру. Она состоит из областей – нанофлуктуаций состава. Там, где больше неодима, возникают несверхпроводящие участки. Там, где меньше неодима, возникает сверхпроводимость. Получаются высокоэффективные центры пиннинга. Группа японских авторов «вморозила» с помощью такой системы сумасшедшее магнитное поле – 14 или 15 тесла! При этом крупнокристаллический высокотемпературный сверхпроводник был залит эпоксидной смолой и помещен в железную шайбу, чтобы магнитное поле не разорвало хрупкую керамику.

Спрашивается – это наноматериал? Нет! Напротив, это крупнокристаллическая керамика (размеры «зерен» до нескольких сантиметров!). Там нет наночастиц. Но там есть нанофлуктуации состава, встроенные в общую иерархию пространственной структуры. Эта замечательная работа, кстати, была сделана еще до бума нанотехнологий.

Между прочим, висмутсодержащие сверхпроводники с нанофлуктуациями состава используются для сверхпроводящих тоководов. Эти материалы прокатываются в ленты, из них делают многожильные кабели, ряд фирм уже выпускает такую продукцию. Сверхпроводящие тоководы работают внутри силовых подстанций и в Германии, и в Штатах, и в Японии. Это очень дорого – и материалы дорогие, и сама линия охлаждается жидким азотом или жидким водородом. Но за длительное время все это может окупиться, благодаря уменьшению энергопотерь.

Просто белила

То и дело слышим, что некая фирма начинает – 'на основе нанотехнологий!' – производить краски, которые обеззараживают воздух и уничтожают вредные примеси. Но ведь такие краски уже лет десять как можно купить в магазине – рублей по сто за банку. Это обычные титановые белила. TiO2 – полупроводник с большой шириной запрещенной зоны. Грубо говоря, если он находится в воде (или контактирует с прилегающим слоем воздуха), то под действием ультрафиолета начинается генерация радикалов, которые убивают органическую грязь. Значит, если взять частицы этого вещества с большой суммарной площадью поверхности, поместить в воду и облучить ультрафиолетом, произойдет очень эффективная очистка воды (при условии, конечно, что вы сможете потом эти частицы отфильтровать). А если нанести титановые белила на стену, то когда солнышко ее осветит, там тоже, возможно, будут убиты очень многие микроорганизмы – либо самим солнцем, либо TiO2, кто потом докажет? Вот пример того, что за модным лозунгом могут скрываться давно известные вещи – просто их раньше не связывали с нанотехом.

Экология и новые материалы: титановые белила и ультрагвозди

Давайте кратко перечислим, что еще не упомянули?

– Нанотех универсален, поэтому перечислять области его применения можно бесконечно. Например, мы не назвали экологию, а вокруг нее особенно много спекуляций. Об этом – врезка 'Просто белила', где речь о замечательных свойствах титановых белил.

С другой стороны, бытовые титановые белила все-таки не из наночастиц состоят – а более эффективные нанопорошки с обеззараживающими свойствами сделать на порядки труднее и дороже, так как эти свойства зависят не только от состава, но и от формы частиц, их срастания с частицами другой фазовой модификации, состава поверхности и многого другого.

Ну а сам-то нанотех представляет угрозу для экологии?

– Опасности существуют, но опять-таки многие из них не новы. Всем известны классические болезни – силикоз, асбестоз, бериллоз, рак легких у углекопов, – которые вызываются мельчайшими (в том числе и нано-) частицами некоторых материалов. Можно вспомнить недавние скандалы с нанокосметикой – плохо, что никто толком не знает, что в нее «запихивают», так как это секрет фирмы. Наночастицы легко проникают в клетки, даже обычный оксид железа может, оказывается, быть вредным в виде наночастиц. С другой стороны, йоги ведь буквально едят железо, в огромных количествах, – и ничего.

Но они же не наночастицы едят?

– Конечно, крупная частица не проникнет внутрь клетки – растворится, переработается. А наночастицы могут вести себя по-другому. Поэтому взаимодействие наночастиц с живым организмом – очень важная область исследований, и сейчас этим многие занялись (в том числе и у нас в МГУ, на биофаке, физфаке, химфаке, факультете наук о материалах и других факультетах). С другой стороны, наночастицы обычно очень реакционноспособны – легко превращаются в другие частицы, растворяются, трансформируются. Можно с осторожностью предположить, что накопление нежелательных наночастиц в окружающей среде – не такая уж большая опасность. Но тут все нужно тщательно изучать. А для этого нужен трезвый подход к проблеме.

В США и Европе в обществе (в частности, у гринписовцев, антиглобалистов) существуют устойчивые антипатии к «нано», есть целые организации, которые борются с нано, и в то же время есть фанатики нано – целый спектр радикальных мнений. К сожалению, у нас пока все только кричат 'ура!' при слове «нанотехнологии» и в то же время слепо (но молча) их боятся.

В заключение надо хотя бы упомянуть новые конструкционные материалы. Это огромное поле иследований. Простейший пример: любая металлическая отливка – поликристаллическая, то есть состоит из зерен. Если эти зерна измельчать – механически, термомеханически – то в принципе можно дойти до уровня, когда весь, предположим, гвоздь будет иметь ультра– (я даже не говорю нано-) дисперсную структуру. Такая структура обеспечит ему меньшую пластичность, но большую жесткость. Так можно получить серьезное – раза в два-три – но не заоблачное улучшение параметров материала. Однако стоимость его значительно возрастет.

О конструкционных материалах можно рассказывать долго – но лучше просто назвать еще несколько исследовательских направлений, связанных с нанотехом: наноионику (в частности, электродные материалы на неуглеродных нанотрубках), 'умные материалы', меняющие форму в зависимости от того, чем их облучают, наноэлектромеханические системы, НЭМС – на таком моторчике ездил сделанный в Университете Райс (Rice University) наноавтомобиль с колесами из фуллеренов, и др.

Реалистичный футуризм

В каких же из перечисленных областей вы ожидаете самого заметного прогресса в ближайшие пять лет?

– Экология, медицина, энергетика, электроника – в этих четырех областях лежит ближайший потенциал применения нанотеха.

В связи с запросами экологии должны появиться новые фотокатализаторы, сорбенты, ультрадисперсные и нанодисперсные порошки – и те, которые дезинфицируют, и те, которые используются для получения продуктов тонкого органического синтеза. Главное направление прогресса здесь – всевозможные катализаторы.

В медицине самые важные применения нанотеха будут связаны с нанокапсулами. Уверен, что удастся существенно улучшить фармакологические формы лекарств и средства их доставки. Будут исследованы основные аспекты взаимодействия наночастиц с живым организмом, и на этой основе появятся принципиально новые лекарства. Но это потребует долгого изучения, так как область малоисследованная и очень рискованная.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×