чем видимый итальянскими горожанами Возрождения чёрт с объективно существующей при отсутствии санобработки Pulex irritans, обычной блохе.
Но квантовая механика – это не мир средневековой демонологии, это вполне объективная научная и технологическая основа современной цивилизации. Да, основа пока лишь электроники и информационных технологий. Но вскоре – и всего человечества.
Недавний рост цен на хлеб объясняется увеличением спроса на зерно для производства топливного этанола. Запасы углеводородов ограничены. И задача рентабельного использования излучения термоядерного реактора, миллиарды лет устойчиво функционирующего в 150 миллионах километров от нас, наверняка потребует инженерного использования процессов квантовой механики. А для этого необходимо увеличить число людей, имеющих как можно более точное представление о них. Если не максимально близкое к реальности, то хотя бы асимптотически приближающееся к математическим, формализованным описаниям реальности. И к тому же людей, умеющих манипулировать этими представлениями в практических целях, как конструктор-механик манипулирует образами поверхностей и линий, накладывая на них ограничения, обусловленные свойствами материалов, законами кинематики и динамики.
Шотландский философ Давид Юм писал: 'Единственная непосредственная польза всех наук состоит в том, что они обучают нас управлять будущими явлениями и регулировать их с помощью причин. Обладающие сходством объекты всегда соединяются со сходными же – это мы знаем из опыта; сообразуясь с последним, мы можем поэтому определить причину как объект, за которым следует другой объект, причем все объекты, похожие на первый, сопровождаются объектами, похожими на второй' [Юм Д., Сочинения в двух томах. Т.2. М., 1965, с.78.].
Управлять будущими явлениями. Как этого можно добиться? Опытом?
Гельмгольц Герман Людвиг Фердинанд (Helmholtz, 1821—1894), выдающийся физик, математик, физиолог и психолог. Родился в Потсдаме, в 1843 году окончил Военно-медицинский институт в Берлине. Военный врач, профессор физиологии университетов в Кенигсберге, Бонне, Гейдельберге. С 1871 года профессор физики в Берлинском университете, с 1888-го директор физико-технического института в Берлине. Именно Гельмгольц в работе 'О сохранении силы' (1847) дал математическое обоснование закона сохранения энергии и показал его применимость к процессам в живых организмах. Доказал применимость принципа наименьшего действия к тепловым, электромагнитным и оптическим явлениям, вскрыл связь этого принципа со Вторым началом термодинамики. Ввел понятие свободной энергии, был пионером теории вихревого движения жидкости и теории разрывных движений.
Гельмгольц обнаружил явление колебательного разряда лейденской банки – факт, сыгравший существенную роль в развитии теории электромагнетизма. По его предложению Генрих Герц провел опыты с электромагнитными волнами. Именно Гельмгольц создал офтальмоскоп и разработал теорию аккомодации. И теория цветового зрения – его детище!
А вот Герман Гельмгольц был весьма скептичен. И в отношении принципа причинности, и в отношении опыта. В 'Физиологической оптике' он писал: 'Принцип причинности носит характер чисто логического закона даже в том, что выводимые из него следствия относятся в действительности не к самому опыту, а к пониманию опыта и, следовательно, не могут быть опровергнуты никаким возможным опытом'.
А ведь мало кто понимал суть опыта так, как Гельмгольц. И зрение – всего лишь частный случай чувственного восприятия. Вот наглядные примеры слов Гельмгольца.
Хорошо известна Т-образная фигура, предложенная ассистентом Гельмгольца Вильгельмом Вундтом. При взгляде на нее кажется, что вертикальная линия длиннее горизонтальной, хотя на самом деле они имеют равную длину. Эта иллюзия легко обратима. На рисунке рядом другая фигура, у которой обе линии – горизонтальная и вертикальная – воспринимаются равными, на самом же деле горизонтальная длиннее.
А вот иллюзия Эрнста Маха (1838—1916). Хотя принадлежит она не австрийскому физику, которого поминают при каждом сверхзвуковом полете и которого сильно не любил Ульянов-Ленин, а Францу Мюллеру-Лайеру.
Здесь все горизонтальные линии одинаковы, но в зависимости от направления стрелок воспринимаются по-разному. И на рис. 5 линия поделена точно посередине, хотя выглядит все совсем иначе!
Мы имеем дело с обычнейшей, нагляднейшей геометрией. И подводит нас элементарнейший глазомер, которым века и века пользовались каменщики и плотники, а их обязанности периодически исполнял любой взрослый мужчина – от басилевса Одиссея и императора Петра Великого до крестьянина из глухой деревеньки, затерянной среди болот.
Гельмгольц в 'Руководстве по физиологической оптике' (1896) объяснял эти явления так: 'Нетрудно видеть, что все свойства, которые мы им [объектам реального мира] приписываем, означают не более чем воздействия, производимые ими либо на наши органы чувств, либо на другие внешние объекты. Цвет, звук, вкус, запах, температура, гладкость, твердость относятся к первому классу; они соответствуют воздействиям на наши органы чувств. Химические свойства аналогичным образом связаны с реакциями, т. е. воздействиями, производимыми рассматриваемым физическим телом на другие. Так же обстоит дело и с другими физическими свойствами тел: оптическими, электрическими, магнитными… Отсюда следует, что в действительности свойства объектов в природе вопреки их названиям не означают ничего присущего самим объектам как таковым, а всегда указывают на их отношение к некоторому второму телу (в том числе к нашим органам чувств)'.
Так что глазомер, некоторая совокупность зоркого глаза и интуиции, бесполезен даже в ряде ситуаций Среднего Мира, нашего обычного мезомира. Давайте пока не нырять внутрь атома, ограничимся миром электромагнитных явлений. Ими пользуется вообще вся цивилизация. Но откуда они пришли к нам?
Вот подводные лодки и воздушные корабли. Их мы видим в записных книжках Леонардо да Винчи, исполненных до оформления современной науки. Скрытые знания, наследие тайных обществ? Да нет, элементарная наблюдательность и способность к аналогиям. Мы же видим и стремительных рыб, и зависающих над цветками насекомых. Вот вам и прообразы вертолетов и субмарин.
А радио? Откуда оно пришло?
Возьмем книгу Василия Щепетнева 'Темные зеркала'. Альтернативная история с твердой научной фантастикой. Подчеркну для любителей жанра – именно твердой (hard SF). Тридцатые годы альтернативного двадцатого века. Конкуренция не рухнувшей в 1917 году Российской и Британской империй в деле освоения Марса. Никаких ракет – между планетами перемещаются неким пространственным переносом. Используя технологии, которые могли бы быть отдаленными следствиями геометрических многомерных теорий Калуцы-Кляйна, 5-оптики Бартини-Румера.
И в этом мире нет радио. Немыслимо? Но ведь оно не имеет природных аналогов. Электромагнитный шум молний, Солнца, Юпитера, центра Галактики? Так ведь нужно создать приборы, способные его улавливать.
А откуда приходят эти приборы? Что подвигло Гельмгольца порекомендовать Генриху Герцу (1857—94) заняться его опытами? Теория Максвелла. А что такое теория Максвелла? Можете ее объяснить наглядно? Автор этих строк, во всяком случае, не берется. Похоже, что к нашим услугам одно лишь высказывание Герца: 'Теория Максвелла состоит из уравнений Максвелла'. Ни чувства, ни интуиция, ни даже сама материя, данная нам в чувственном восприятии. Только математика. То есть изобретение радио – результат построения теории, рожденной разумом человека. Больше плод математики, чем природы.
А вот еще Герц: 'Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально заложено' [Клайн М., Математика. Утрата определенности. М., 1984, с.389.].
Так что те, кто говорят, что могут на основе знаний средней школы объяснить, как работает радиоприемник или телевизор, или холодильник, мягко говоря, заблуждаются. Функционирование этих общеупотребительных приборов описывает лишь математический формализм. Доступный немногим. И нет ли тут каких-либо обходных путей? Не царских, но общедоступных? От их существования, а вовсе не от